Нанотехнологии. Правда и вымысел (Балабанов, Балабанов) - страница 83

Рис. 40. Заготовка графеновой плоскости для получения нанотрубки с хиральностью (n, m) = (4, 2)

Диаметр трубки и угол свертывания (или шаг свертывания) обычно характеризуются кристаллографическим аналогом элементарной ячейки для двухмерного графенового листа, из которого выкраивают единичный повторяющийся кусочек нанотрубки – «вектор свертывания» С = no1 + mo2, где а1 и а2 – базисные векторы графитовой гексагональной ячейки.

Свертывание производится так, чтобы начало и конец вектора С совместились. В пределе нехиральных случаев свертывание происходит по так называемой линии зигзаг (при m = 0) и «ковшик с ручкой» (другое название – «подлокотник кресла») при m = n. Эти направления на рис. 40 изображены пунктирными линиями. Вектор трансляции Т вдоль продольной оси нанотрубки перпендикулярен С, его величина показывает расстояние, на котором воспроизводится структура вдоль оси. Площадь свертывания, заключенная между Т и С (затемненная область), соответствует единичному участку нанотрубки, который многократно повторяется вдоль продольной оси.

Индексы хиральности (m, n) определяют диаметр D однослойной нанотрубки:

где do = 0,42 нм – расстояние между соседними атомами углерода в гексагональной сетке графитовой плоскости. Таким образом, зная D, можно найти хиральность (соотношение m и n).

Геометрия свертывания задает структуру нанотрубок – расстояние, силу связи между атомами. Расчеты электронной зонной структуры показывают, что именно индексы n и m определяют, какой будет электропроводимость системы – металлической или полупроводниковой. Металлические нанотрубки всегда проводят электрический ток даже при температуре абсолютного нуля, тогда как проводимость полупроводниковых трубок возрастает при нагревании.

В большинстве случаев минимальный диаметр трубки близок к 0,4 нм, что соответствует хиральностям (3, 3), (5, 0) и (4, 2), однако объекты такого диаметра наименее стабильны. Самой стабильной однослойной структурой является нанотрубка с индексами хиральности (10, 10), ее диаметр равен 1,36 нм.

Таким образом, появляется возможность создавать новые сверхпрочные композиционные конструкционные материалы, не изменяя химический состав компонентов, а регулируя размеры и формы частиц, составляющих вещество.

Первые же исследования показали, что нанотрубки обладают уникальными механическими свойствами. Модуль упругости вдоль продольной оси трубки достигает 70Х105 МПа. Для сравнения: у легированной стали он равняется 2,1Х105 МПа, а у наиболее упругого металла иттрия – 5,2Х105 МПа. Кроме того, однослойные нанотрубки имеют высокую (до 16 %) эластичность, то есть способность оказывать влияющей на них силе