Теория струн и скрытые измерения Вселенной (Яу, Надис) - страница 41

Это чем-то похоже на рыбалку. Если тебе достаточно и маленькой рыбки, ты получишь удовольствие, если поймаешь хоть что-то. А вот если ты собираешься поймать самую большую из рыб, которую когда-либо ловили, — эдакое мифическое создание, существующее только в легендах, — то, скорее всего, придешь домой с пустыми руками. Уже прошло тридцать пять лет, а гипотеза Римана по-прежнему остается недоказанной. Как говорят математики: то, что доказано на 90 процентов, — на самом деле не доказано.

Так я рассуждал, отвергая предложение Черна. Но на самом деле все было гораздо серьезнее. В то время, как я уже говорил, я был полностью поглощен общей теорией относительности, пытаясь понять, какие из особенностей нашей Вселенной возникают вследствие взаимодействия гравитации, искривления пространства и геометрии. Я не знал, когда мои мысли повернулись в этом направлении, однако я предчувствовал, что нахожусь в начале великого похода, собирая воедино все силы геометрии, чтобы двинуться в сторону истины.

Будучи ребенком, появившимся на свет в более чем стесненных обстоятельствах, я никогда не имел возможности увидеть большую часть мира. Моя страсть к геометрии родилась у меня еще в раннем возрасте из желания нанести на карту страну, столь большую, как Китай, и путешествовать по морю, не имеющему конца. Мне посчастливилось совершить куда более дальнее путешествие — эту возможность мне предоставила геометрия. Только теперь вместо одной страны передо мной была вся Земля, а вместо моря — Вселенная. Ну а маленькую соломенную сумку, которую я собирался всюду возить за собой, заменил небольшой портфель с линейкой, циркулем и транспортиром.

Третья глава

Новая разновидность молотка

Геометрия, несмотря на весьма насыщенную историю и впечатляющие достижения, которыми она может похвастаться на сегодняшний день, не является завершенным произведением, она по-прежнему развивается, постоянно открывая заново саму себя. Одним из последних нововведений в геометрии, внесшим определенный вклад в теорию струн, стало создание геометрического анализа — подхода, который ярко проявил себя только в последние десятилетия. Основной идеей этого подхода является использование мощных методов математического анализа (частью которого является дифференциальное исчисление) для интерпретации геометрических понятий и, напротив, использование геометрической интуиции для интерпретации понятий анализа. Едва ли это новшество станет последним в геометрии — как не стали последними в истории геометрии те нововведения, о которых мы уже говорили. Тем не менее геометрический анализ уже достиг весьма значительных успехов.