Вплоть до 1970-х годов геометры всячески избегали нелинейных уравнений, впрочем, я и мои современники не испытывали перед ними сильного страха. Мы поставили себе целью узнать, как следует обращаться с подобными уравнениями, чтобы затем использовать их в своей повседневной работе. Рискуя показаться нескромным, я все же скажу, что эта стратегия не только оправдала себя, но и вышла далеко за рамки первоначальных задач. На протяжении многих лет, используя методы геометрического анализа, мы занимались решением важнейших задач, не разрешенных до этого каким-либо другим способом. «Смесь геометрии с теорией [дифференциальных уравнений в частных производных], — отметил математик Имперского колледжа Лондона Саймон Дональдсон, — задает тон во всей обширной области, касающейся данного предмета, на протяжении последней четверти столетия».[26]
Итак, чем же занимается геометрический анализ? Рассмотрим сначала простейший пример. Предположим, что вы нарисовали окружность и сравнили ее с произвольной петлей или замкнутой кривой, которая имеет несколько меньшую длину, — в роли подобной петли может выступать обычная резинка, небрежно брошенная на письменный стол. Эти две кривые выглядят совершенно различными и, естественно, имеют разную форму. Однако можно представить, как резинка деформируется (или растягивается) и превращается в окружность — такую же, как та, что нарисована на бумаге.
Существует много способов сделать это. Вопрос в том, какой из них лучше? Иными словами, существует ли такой способ, который будет безотказно работать во всех возможных случаях и никогда не приведет к возникновению узлов или перекручиваний? Можно ли найти этот универсальный способ, не прибегая к методу проб и ошибок? Узнать все это можно в рамках геометрического анализа, который позволяет, исходя из геометрии произвольной кривой (в нашем случае резинки), сделать выводы о способах ее преобразования в окружность. Этот процесс не должен быть произвольным. Строго определенный или — еще лучше — канонический путь превращения нашей кривой в окружность однозначно определяется ее геометрией. Для математиков слово канонический является синонимом слова «единственно верный», что, впрочем, иногда звучит излишне строго. Представим себе, что мы хотели бы попасть с Северного полюса на Южный. Существует бесконечно много меридианов, соединяющих эти точки. Каждый из меридианов будет кратчайшим путем, но ни один из них не будет единственно верным; вместо этого мы называем такие пути каноническими.
Те же вопросы остаются актуальными и в случае более высоких размерностей. Вместо окружности и резинки теперь можно сравнить сферу или полностью надутый баскетбольный мяч со сдутым баскетбольным мячом с разнообразными углублениями и выступами. Задача состоит в том, чтобы превратить сдутый баскетбольный мяч в идеальную сферу. Конечно, для этого лучше всего использовать насос, но можно и математику. Математическим аналогом насоса в геометрическом анализе является дифференциальное уравнение, служащее движущим механизмом процесса преобразования формы путем крошечных непрерывных изменений. Стоит только определиться с начальной ситуацией (геометрией сдутого мяча) и найти подходящее дифференциальное уравнение — и задача будет решена.