Теория струн и скрытые измерения Вселенной (Яу, Надис) - страница 53

Чтобы увидеть то, что может получиться из соединения геометрического анализа с теорией минимальных поверхностей, давайте продолжим наш разговор о мыльных пленках.

В XIX столетии бельгийский физик Жозеф Плато провел в этой области серию классических экспериментов, состоявших в погружении изогнутых различными способами кусков проволоки в сосуды с мыльной водой. Плато сделал вывод, что мыльные пленки, которые образовывались в ходе эксперимента, всегда имели минимальную поверхность. Более того, он предположил, что для любой замкнутой кривой всегда можно найти минимальную поверхность, контуром которой служила бы данная кривая. В большинстве случаях будет существовать только одна минимальная поверхность — и тогда задача будет иметь единственное решение. Но в некоторых случаях существует больше чем одна поверхность с минимальной площадью, и мы не знаем, сколько их будет всего.

Гипотеза Плато оставалась недоказанной вплоть до 1930 года, когда Джесси Дуглас и Тибор Радо независимо друг от друга нашли решение этой проблемы. За свою работу в этой области Дуглас получил в 1936 году медаль Филдса, став первым обладателем этой награды.

Рис. 3.7. Математик Уильям Микс (фотография Хоакина Переза)


Не всякая минимальная поверхность столь же проста, как мыльная пленка. Некоторые минимальные поверхности, над которыми ломают головы математики, намного сложнее и характеризуются многочисленными изгибами и складками, называемыми особенностями, или сингулярностями, — впрочем, многие из них встречаются в природе. Через несколько десятилетий после того, как Дуглас и Радо опубликовали свои работы, их разработки были продолжены стэнфордским математиком Робертом Оссерманом, автором блестящей книги по геометрии под названием «Поэзия Вселенной», который показал, что минимальные поверхности, фигурирующие в экспериментах, подобных экспериментам Плато, могут иметь только один тип особенностей, выглядящих как диски или плоскости, пересекающиеся по прямым линиям. Следующий шаг был совершен мной и Уильямом Миксом, профессором Массачусетского университета, с которым мы вместе учились в Беркли.

Рис. 3.8. Лемма Дена, геометрическая версия которой была доказана Уильямом Миксом и автором данной книги (Яу), обеспечивает математический метод для преобразования пересекающихся поверхностей в поверхности без пересечений, складок и других особенностей. Лемму обычно формулируют в терминах топологии, но геометрический подход Микса и Яу дает более точное решение


Мы рассмотрели ситуацию, в которой в роли минимальных поверхностей выступали так называемые вложенные диски, представляющие собой поверхности, которые на всем своем протяжении ни разу не изгибаются настолько, чтобы пересечь сами себя. Локально подобное пересечение выглядело бы как пересечение двух или нескольких плоскостей. В частности, нас заинтересовали