Впрочем, несмотря на вклад геометров в разрешение загадок черных дыр, изучение этих объектов в настоящее время находится в большей степени в руках астрофизиков, наблюдающих явления, происходящие вблизи самого края горизонта событий — границы, за пределами которой никакие наблюдения невозможны, поскольку ничто, включая свет, не способно вернуться «с той стороны». Тем не менее если бы не работы теоретиков, таких как Хокинг, Пенроуз, Джон Уиллер, Кип Торн и другие, вряд ли астрономы сосредоточили бы свое внимание на поисках именно этих объектов.
Описанные мной достижения имеют огромное значение, но я не хочу, чтобы у вас возникло впечатление, что возможности геометрического анализа на этом исчерпываются. Я сознательно ограничился только теми результатами, которые мне известны лучше всего, в получении которых я принимал непосредственное участие. В то же время данная область математики является намного более обширной, представляя собой плод усилий более чем сотни первоклассных ученых всего мира, и описанные мной задачи представляют лишь небольшой фрагмент общей картины. Кроме этого на протяжении большей части этой главы, темой которой является геометрический анализ, мы ни разу не упомянули некоторые из крупнейших достижений нашей дисциплины. Объять необъятное я не в состоянии; один лишь перечень успехов геометрического анализа, который я составил в 2006 году, занимает семьдесят пять страниц плотного текста, поэтому мы рассмотрим только те три из них, которые я считаю наиболее важными.
Первое из этих ключевых достижений лежит в области четырехмерной топологии. Основная задача тополога не сильно отличается от основной задачи таксономиста: классифицировать все возможные типы пространств или многообразий, допустимых для данной размерности. Многообразием называется пространство или поверхность любой размерности, поэтому мы можем использовать эти термины как синонимы.
В следующей главе мы рассмотрим многообразия более подробно. Топологи пытаются свалить в одну кучу различные объекты, имеющие одинаковую базовую структуру, даже если те совершенно не похожи внешне и даже различаются в отдельных деталях. Так, двухмерные поверхности — при условии их компактности, то есть замкнутости и ограниченности, и ориентируемости (наличии внешней и внутренней стороны) — можно классифицировать по количеству имеющихся дырок: тороидальные поверхности имеют по крайней мере одну дырку, тогда как топологическими сферами называются поверхности, которые дырок не имеют вовсе. Если число дырок для двух подобных поверхностей одинаково, то для тополога они эквивалентны, несмотря на всю разницу в их внешнем виде. Так, и чашка кофе и сушка, которую в нее обмакнули, являются торами первого рода. Тем же, кто предпочитает сушки с молоком, интересно будет узнать, что стакан, из которого они пьют, топологически эквивалентен сфере — его можно получить, протолкнув северный полюс в направлении южного и чуть подкорректировав форму полученного объекта.