Теория струн и скрытые измерения Вселенной (Яу, Надис) - страница 69

Гипотеза Пуанкаре звучит весьма просто, но на самом деле она далеко не очевидна. Рассмотрим двухмерный аналог этой задачи, не обращая внимания на то, что в действительности проблема сформулирована для трех измерений (и решить ее в этом случае намного сложнее). Представим себе сферу, например глобус, по экватору которого проходит резинка. Теперь легонько подтолкнем эту ленту в направлении северного полюса так, чтобы при этом она не переставала касаться поверхности. Если резиновая лента достаточно эластична, то, достигнув полюса, она фактически стянется в одну точку. В случае тора ситуация будет иная. Представим себе, что резиновая лента проходит через дырку тора и выходит с противоположной стороны. В данном случае стянуть резиновую ленту в одну точку, не разрезая при этом тор, невозможно. Резиновую ленту, идущую вокруг внешней поверхности тора, можно переместить в его верхнюю часть и оттуда уже спустить на внутреннюю поверхность. Однако пока лента находится на поверхности тора, стянуть ее в точку не удастся. По этой причине для тополога сфера имеет фундаментальное отличие от тора или любого другого многообразия, имеющего одну или несколько дырок. Гипотеза Пуанкаре, по сути, представляет собой вопрос, чем в действительности является топологическая сфера.

Прежде чем перейти к доказательству, я хотел бы вернуться на несколько десятилетий назад, в 1979 год, когда я еще работал в Институте перспективных исследований. В тот год я пригласил в Принстон более дюжины исследователей со всего мира, работающих в области геометрического анализа, чтобы вместе с ними попытаться заложить основы этой новой дисциплины. Мною было отобрано 120 важнейших геометрических вопросов, почти половина из которых в настоящее время полностью решена. Гипотеза Пуанкаре в этот список не входила. Причиной тому, с одной стороны, было отсутствие необходимости привлекать внимание к задаче, которая и без того являлась одной из известнейших в математике. С другой стороны, я искал задачи, имеющие более узкую формулировку, — такие, на которые можно найти однозначный ответ, — причем, по возможности, в обозримое время. И хотя нам порой приходилось бороться за то, чтобы узнать что-то новое, мы достигли заметного прогресса именно на пути решения подобных задач; это как раз то, что стимулирует математиков к работе сильнее, чем что-либо другое. В то время, однако, никто не знал, что делать с гипотезой Пуанкаре.

Одним из тех, кто не принимал участия в наших дискуссиях, был математик Ричард Гамильтон, работавший тогда в Корнеллском университете и впоследствии осевший на математическом факультете Колумбийского университета. В то время он как раз приступал к выполнению амбициозного проекта, посвященного поиску методов преобразования сложной и не обладающей гладкостью метрики в более гладкую. Несмотря на все упования Гамильтона, эти разработки не принесли столь быстрого успеха, на который он рассчитывал. Его интересовала чрезвычайно сложная система уравнений, относящаяся к вопросу о потоке Риччи — одном из видов геометрического потока, которые уже упоминались ранее. По сути дела, геометрический поток представляет собой метод, позволяющий разгладить выпуклости и прочие неровности на неоднородной поверхности, придавая таким образом поверхностям более однородную кривизну и выявляя фундаментальные формы, лежащие в их основе. Идеи Гамильтона не вошли в мой список из 120 основных задач хотя бы потому, что в то время он еще ничего не опубликовал по этой теме. Он скорее забавлялся ими, чем пытался найти решение.