Представим себе этот процесс в виде перетягивания каната, на одном конце которого находится спутник со своей планетой, а на другом — Солнце. Как поведет себя Солнце в этом соревновании?
Думаю, что астрономы все это давно подсчитали, однако я ни разу не видел результатов этих расчетов в литературе, поэтому решил выполнить их сам.
Вот что можно сделать. Давайте обозначим массу спутника m, массу его планеты (вокруг которой он вращается) m>р, массу Солнца — m>s. Расстояние от спутника до планеты у нас будет d>р, а расстояние от спутника до Солнца — d>s. Гравитационная сила, действующая между спутником и планетой, — f>p, а между спутником и Солнцем — f>s. Вот и все. Обещаю, больше вы не увидите никаких новых обозначений, по крайней мере в этой главе.
Из формулы 1 видно, что сила притяжения между спутником и планетой:
f>p = gmm>p/d>p>2 (формула 2),
а между тем же спутником и Солнцем:
f>s = gmm>s)/d>s>2 (формула 3).
Нам интересно узнать, насколько гравитационная сила, действующая между спутником и планетой, сравнима с аналогичной силой, действующей между спутником и Солнцем. Иными словами, чрезвычайно любопытно вычислить отношение f>p/f>s, которое можно назвать «коэффициентом перетягивания каната». Чтобы его получить, следует разделить формулу 2 на формулу 3. Результат приведен в формуле 4:
f>p/f>s = (m>p/m>s) (d>s/d>p)>2 (формула 4).
При делении формула несколько упростилась. Во-первых, исчезла гравитационная постоянная, и нам не придется иметь дело с малыми числами и неудобными размерностями. С другой стороны, сократилась масса спутника (иными словами, для получения «коэффициента перетянутого каната» не имеет значения размер спутника).
В формуле остались отношение массы планеты к массе Солнца, а также квадрат отношения расстояния от спутника до Солнца к расстоянию от спутника до планеты.
Спутники имеют только шесть планет. Это Нептун, Уран, Сатурн, Юпитер, Марс и Земля (в порядке убывания расстояния от Солнца).
Произведя подсчет отношения масс, получим следующие результаты:
Нептун … 0,000052
Уран … 0,000044
Сатурн … 0,00028
Юпитер … 0,00095
Марс … 0,00000033
Земля … 0,0000030
Как видите, отношение масс явно в пользу Солнца. Даже Юпитер — самая тяжелая из планет — не дотянул до >1/>1000 массы Солнца. В действительности суммарная масса всех планет (с учетом спутников, астероидов, комет и метеоритов) составляет не более >1/>750 массы Солнца.
Пока у Солнца имеются все шансы выиграть соревнования по перетягиванию каната.
Однако нам следует рассмотреть и отношение расстояний, а здесь все говорит в пользу планеты, потому что любой спутник располагается ближе к своей родной планете, чем к Солнцу. Тем более, что это отношение расстояний следует еще возвести в квадрат. После этого уже можно почти не сомневаться, что Солнце не перетянет канат. Но все-таки проверим.