Когда ты была рыбкой, головастиком - я... (Гарднер) - страница 89

Кроме того, Херш заявляет: один раз я обвинил его в том, что он солипсист. И снова я не совсем понимаю, что он имеет в виду. Не исключаю, что я описывал его антиреализм как туманную разновидность социального (коллективного) солипсизма. Херш — большой поклонник статьи антрополога Лесли Уайта «Место математической реальности». Ее место, как заявляет Уайт, не во внешнем мире, а в человеческой культуре. Математические теоремы сходны в этом смысле с правилами дорожного движения, модами, живописью, музыкой и т. п.

Конечно же это не солипсизм в обычном смысле слова. За пределами психиатрических лечебниц вообще нет истинных и последовательных солипсистов. Однако антиреализм Уайта и Херша приправлен социальным солипсизмом — поскольку, по их утверждениям, если исчезнет человеческая цивилизация, уйдет в небытие и вся математика. Ну да, Вселенная при этом не погибнет, однако больше не останется никого, кто занимался бы математикой (разве что ученые на других планетах). Полагаю, Херш согласится: то, что мы называем математическими структурами и явлениями, будет по-прежнему существовать, однако если не останется ни одного разумного существа, которое бы изучало их, во Вселенной не будет ничего, что заслуживало бы названия математики.

И тут снова возникает вопрос о том, какой же научный язык в данном случае самый лучший и наименее противоречивый. Мне кажется, лучше всего сказать, что если исчезнут все разумные существа, то 2+2 по-прежнему будет равно четырем, отношение длины окружности лунного диска к его диаметру по-прежнему будет близко к та, а сумма внутренних углов евклидова треугольника будет по-прежнему составлять 180°. Подозреваю, Херш предпочтет заявить, что ни одно из этих суждений больше не будет верным, поскольку не останется цивилизаций, где такие утверждения могли бы выдвигаться. А если он думает иначе, тогда Херш, чего доброго, превратится в платоника.

Вместе с Полем Дираком и тысячами других выдающихся математиков я верю, что существует Бог — непревзойденный математик, чьи познания в этой науке гораздо, гораздо обширнее наших. Но бесконечны ли они — откуда мне знать? Господу наверняка неведома последняя цифра числа то, ибо такой цифры не существует вообще. Даже будь я атеистом, мне бы казалось чудовищным высокомерием считать, что математика реально существует лишь в сознании разумных обезьян.

Часть IV


ЛОГИКА


Глава13


Взрыв Оракула Бреддиджа


Когда предсказание само является частью предсказываемого события, могут возникать всякого рода логические парадоксы. Я несколько раз писал о таком явлении. Текст этой главы был впервые опубликован в «Isaac Asimov's Science Fiction Magazine» (август 1979). Более раннюю версию этого парадокса, в виде пари, заключаемого у стойки бара, можно найти в «Ibidem» (канадском журнале, посвященном математической магии), в номере за март 1961 года, а также в главе и моих «Новых математических забав из «Scientific American» (Нью-Йорк: «Simon & Schuster»