Эйнштейн. Жизнь, смерть, бессмертие (Кузнецов) - страница 91

132

это меняется. Пассажиры второго корабля могут утверждать, что их корабль неподвижен (скорость сигналов действительно не обнаруживает движения) и что сигналы попадают па экраны в одно и то же время. Но пассажиры первого корабля имеют столько же оснований настаивать на неподвижности своего корабля и одновременности освещения своих экранов. Вместе с абсолютным движением теряет смысл и абсолютная одновременность. События, одновременные в одной системе отсчета, будут неодновременными в другой системе, и наоборот. Теория Эйнштейна покончила с фикцией единого потока времени, охватывающего всю Вселенную. Соответственно она покончила с фикцией чисто пространственных мгновенных процессов. Наступила эра четырехмерного, пространственно-временного представления о мире.

Математический аппарат такого представления был создан Германом Минковским в 1908 г. Минковский в это время жил в Гёттингене. Здесь издавна, со времен Гаусса, существовала традиция крайней изощренности в строгости математической мысли и интереса к основаниям математики. Почти за столетие до описываемого времени здесь встретила сочувственное понимание геометрия Лобачевского, здесь Риман изложил своп соображения о многомерной геометрии и здесь же он построил свой вариант неевклидовой геометрии. В Гёттпнгене любили математические тонкости. Их любили все: даже физики погружались в математические построения, не преследовавшие цели разъяснения физической сущности явлений. Эйнштейн как-то пошутил: "Меня иногда удивляют гёттингенцы своим стремлением не столько помочь ясному представлению какой-либо вещи, сколько показать нам, прочим физикам, насколько они превышают нас по блеску" [1].

1 Frank, 305.

В этом замечании чувствуется некоторая досада физика, ищущего необходимый ему аппарат и сталкивающегося с работами, блестящими по форме, но вносящими скудный вклад в собственно физические представления. Однако изощренность и строгость математической мысли у самых крупных мыслителей Гёттингена была связана с очень глубоким проникновением в ее физические истоки. Идею экспериментального решения вопроса: "какая

133

геометрия из возможных, т.е. непротиворечивых, геометрий соответствует реальности", мы встречаем и у Гаусса, и у Римана, и у гёттингенцев, современников Эйнштейна. В числе ученых, работавших в те годы в Гёттингене и обладавших "душою чисто гёттингенской" (в отличие от пушкинского героя, здесь дело не сводилось к идеальным романтическим порывам), были Герман Мипковский, Давид Гильберт, Феликс Клейн, Эмма Нётер, для которых теория относительности стала исходным пунктом блестящих математических обобщений.