[45]. Как в физике, так и в эволюционной биологии такие ансамбли (например, идеальный газ в физике и геном как сумма генов в биологии) являются идеализациями. В реальности отклонения от поведения, которое предсказывается простыми статистическими моделями, неизбежны и значимы. В эволюционной биологии такие отклонения, кроме всего прочего, вызываются различными взаимодействиями генов, что приводит к неожиданным эффектам, таким как отсутствие строгой корреляции между биологической значимостью гена и скоростью его эволюции. Тем не менее существенный эвристический потенциал прямого статистического подхода в объяснении по крайней мере некоторых фундаментальных свойств как физических, так и биологических процессов неоспорим.
Рекомендуемая дополнительная литература[46]
Barabasi, A. L., and Z. N. Oltvai. (2004) Network Biology: Understanding the Cell’s Functional Organization. // Nature Reviews Genetics 5: 101–113.
Обзор свойств биологических сетей с акцентом на масштабной инвариантности.
Barton, N. H., and J. B. Coe. (2009) On the Application of Statistical Physics to Evolutionary Biology. Journal of Theoretical Biology 259: 317–324.
Технически сложная, но важная работа по термодинамическому подходу в эволюционной биологии.
Drummond, D. A., and C. O. Wilke. (2009) The Evolutionary Consequences of Erroneous Protein Synthesis. Nature Reviews Genetics 10: 715–724.
Критический обзор концепции эволюции, ограниченной ошибками трансляции и ошибками укладки белка.
Lobkovsky, A. E., Y. I. Wolf, and E. V. Koonin. (2010) Universal Distribution of Protein Evolution Rates As a Consequence of Protein Folding Physics. Proceedings of the National Academy of Sciences USA 107: 2,983—2,988.
В этой работе эволюционная динамика выводится в рамках простой модели укладки белка и с хорошей точностью воспроизводится универсальное распределение эволюционных скоростей.
Koonin, E. V., and Y. I. Wolf. (2006) Evolutionary Systems Biology: Links Between Gene Evolution and Function // Current Opinion in Biotechnology 17: 481–487.
Обзор корреляций между эволюционными и молекулярно-фенотипическими параметрами.
Koonin, E. V., Y. I. Wolf, and G. P. Karev. (2002) The Structure of the Protein Universe and Genome Evolution // Nature 420: 218–223.
Обсуждение универсальных распределений и зависимостей с акцентом на роли стохастических процессов и принципе предпочтительного присоединения.
Molina, N., and E. van Nimwegen. (2009) Scaling Laws in Functional Genome Content Across Prokaryotic Clades and Lifestyles // Trends in Genetics