Евклидово окно. История геометрии от параллельных прямых до гиперпространства (Млодинов) - страница 21

Евклид дал определения точке, линии (которая, согласно определению, может быть искривленной), прямой линии, окружности, прямому углу, поверхности и плоскости. Некоторые понятия он определил довольно точно. «Параллельные прямые, – писал он, – это прямые линии, которые, находясь на одной плоскости, продолженные до бесконечности в обоих направлениях, ни в одном из этих направлений не пересекаются».

Окружность, по словам Евклида, есть «плоская фигура, обозначенная одной линией (кривой) так, что все прямые линии, пересекающие ее и еще одну из точек внутри ее, называемую центром, равны друг другу». О прямом угле сказано так: «Когда прямая линия пересекает другую прямую линию, а образующиеся соседние углы равны друг другу, любой из этих углов – прямой».

Некоторые другие Евклидовы определения – например, точки или прямой – довольно расплывчаты и бесполезны: прямая – это «та, что лежит равномерно на всех точках, что на ней помещены». Это определение, вероятно, возникло из строительной практики – там прямоту линий проверяли, глядя из некой точки вдоль проверяемой прямой. Чтобы вникнуть в это определение, нужно загодя иметь в уме понятие прямой. Точка есть «то, у чего нет частей» – еще одно определение, граничащие с бессмыслицей.

Евклидовы общие утверждения более элегантны. Эти внегеометрические логические утверждения [56] , судя по всему, Евклид считал проявлениями бытового здравого смысла – в отличие от постулатов, что были вполне геометричны. Эту разницу обозначил ранее еще Аристотель. Всесторонне взвесив эти интуитивные допущения, Евклид, по сути, добавил их к постулатам, однако явно желал отличать их от чисто геометрических утверждений. Одно то, что Евклид счел необходимым вообще эти утверждения предъявить, указывает на глубину мысли:

...

1. Равные одному и тому же равны и между собой.

2. И если к равным прибавляются равные, то и целые будут равны.

3. И если от равных отнимаются равные, то остатки будут равны.

4. И совмещающиеся друг с другом равны между собой.

5. И целое больше части [57] .

Если же отложить в сторону эти предварительные замечания, геометрическая суть евклидовой геометрии покоится на пяти постулатах. Первые четыре просты и могут быть сформулированы не без изящества. В современных терминах они звучат так:

Евклидов постулат параллельности

...

1. От всякой точки до всякой точки можно провести прямую.

2. Ограниченную прямую можно непрерывно продолжать по прямой.

3. Из всякого центра всяким раствором может быть описан круг.

4. Все прямые углы равны между собой.