Евклидово окно. История геометрии от параллельных прямых до гиперпространства (Млодинов) - страница 30

Но все же греческую мысль воскресили. Интерес к книгам вроде «Топографии» увял, а работы Боэция были заменены переводами поточней. В период позднего Средневековья группа философов создала пространство мысли, в которой процветали великие математики XVI века – Ферма, Лейбниц, Ньютон. Один из таких мыслителей оказался в центре следующей революции геометрии и нашего понимания пространства. Имя ему Рене Декарт.

Часть II. История Декарта

...

Где вы находитесь?

Как математики открыли простые принципы графиков функций и координат, что привело к эпохальному прорыву в философии и науке.

Глава 7. Революция местоположения

Откуда вам известно, где вы находитесь? Поняв, что существует пространство как таковое, следом задать этот вопрос – естественнее всего. Может показать ся, что ответ – за картографией, наукой о картах. Но картография – лишь начало. Подлинная теория определения местоположения ведет к понятиям гораздо глубже простого утверждения «Калэмэзу [78] – в квадрате F3».

Определение местоположения не сводится к названию населенного пункта. Представьте, что эмиссар другой планеты приземляется у нас – эдакое тощее существо, голова пузырем, сам дышит кислородом, ну или косматый, похожий на обезьяну субъект, предпочитающий оксид азота. Пожелай мы общаться, нашему гостю не помешал бы словарь. Но хватит ли этого? Если ваше представление о качественном общении сводится к обмену репликами вроде «Я Тарзан, ты Джейн», словарем можно ограничиться, однако для обмена межгалактическими идеями пришлось бы выучить грамматику обоих языков. В математике тоже есть свой словарь – система наименований точек на плоскости, в пространстве или на шаре, но это лишь начало. Подлинная мощь теории местоположения – в способности соотносить разные местоположения, пути между ними и их формы, а также взаимодействовать с ними при помощи уравнений, т. е. в объединении геометрии и алгебры.

Ныне, как говорится в одном старом учебнике по этому предмету [79] , «учащемуся в наше время эти приемы даются практически без усилий». Трудно представить себе, до каких еще более грандиозных теорий додумались бы великие астрономы-физики Кеплер и Галилей, владей они приемами геометрии координат, но им пришлось обходиться без них. А вот уже располагая этим знанием, их последователи, Ньютон и Лейбниц, создали математический анализ и современную физику. Если бы геометрия и алгеб ра продолжили существовать порознь, мало какие достижения современной физики и инженерии стали бы возможны.

Подобно революции доказательства, первая веха на пути революции места – изобретение карт – возникла еще в догреческие времена. И хоть греческие гении вложились в этот предмет, конец цивилизации оставил его незавершенным, но сила этого знания уже оказалась на свободе. Следующим шагом в том же направлении стало изобретение графического представления функций, но оно случилось лишь с возрождением интеллектуальной традиции, после «темного» Средневековья. В итоге ушли последние великие греческие математики и картографы, и эта революция отстала на десяток веков.