Глава 10. Скромное обаяние графиков
Суровая сноровистая женщина плывет в лодке по речным протокам в глубине тропических лесов Амазонии – возвращается домой к кровожадным рыбам и ордам москитов, останавливаясь в лесных хижинах, ведомых мало кому, кроме немногих одиноких местных. Она не персонаж из Средневековья. Она из нашего века. Кто она? Может, врач? Волонтер международной помощи? Нет, даже не тепло. Она везет кремы, духи и косметику компании «Эйвон».
Тем временем в нью-йоркской головной конторе ее начальники в костюмах анализируют ход своей мировой войны с сухостью кожи, применяя методы, изобретенные человеком, о котором, без сомнения, ни один из этих начальников сроду ни разу не задумался. Вообразим графики, отражающие ежегодный рост прибылей «Эйвона» по сегментам рынка: международные показатели – синим, местные – красным. Ежегодный отчет иллюстрирует общий оборот компании, объемы сбыта, прибыли отдельных торговых точек; в нем целые страницы прочих показателей во всех мыслимых видах графиков и диаграмм – и тебе столбчатых, и круговых.
Если бы средневековый торговец показал кому-нибудь результаты своей работы в таком виде, на него бы вытаращили глаза. Что означают эти разноцветные геометрические фигуры, соседствующие в том же документе с римскими цифрами? Макароны и сыр уже успели изобрести (сохранился английский рецепт XIV века [102] ), а вот идею поженить числа и геометрические фигуры – нет. Ныне графическое представление знания настолько общепринято, что мы едва ли думаем о нем как о математическом приеме: даже самый матемафобный директор «Эйвона» понимает, что линия на графике прибылей, тянущаяся вверх, есть многая радость. Но куда бы ни тянулись графики – вниз или вверх, – изобретение их стало жизненно важным шагом на пути к теории местоположения.
Союз чисел и геометрии греки понимали, увы, неверно – аккурат в этом месте философия оказалась помехой. В наши дни любой школьник изучает, грубо говоря, числовой ряд – линию, обеспечивающую упорядоченную связь между точками на ней и положительными и отрицательными целыми числами, равно как и между всеми дробями и прочими числами на этой линии. Эти «другие числа» – иррациональные, т. е. не целые и не дроби, как раз их отказался признавать Пифагор, но они тем не менее существуют. Числовой ряд обязан включать в себя и их – без иррациональных чисел в нем возникнет бесконечное множество дыр.
Мы уже говорили, как Пифагор открыл квадрат с длиной стороны в единицу, у которого диагональ равна квадратному корню из двух, а это иррациональное число. Если эту самую диагональ отложить в числовом ряду от нуля, другой ее конец обозначит точку, соответствующую иррациональному числу – квадратному корню из двух. Запретив обсуждение иррациональных чисел – они не вписывались в его представления о том, что все числа обязаны быть либо целыми, либо дробными, – Пифагор был вынужден запретить и ассоциацию прямой с числом. Таким способом он замел эту неувязку под ковер – и придушил тем самым одну из самых плодотворных идей в истории человеческой мысли. У всех свои недостатки.