...
Одинокий, сную я меж счастливых людей, окружающих меня. И если хоть на мгновенья заставляют они меня забыть о моей печали, она возвращается с удвоенной силой… Даже ясное небо усугубляет мою грусть…
Глава 16. Падение пятого постулата
Гаусса не стали бы считать светилом математики, не повлияй он так глубоко на многие ее области. И тем не менее иногда Гаусса воспринимают как фигуру переходную – скорее как ученого, завершившего разработки, начатые Ньютоном, а не основоположника работ грядущих поколений. В части геометрии пространства это совсем не так: его усилия обеспечили математикам и физикам поле для работы на сто лет вперед. И лишь одно мешало революции произойти: Гаусс хранил свою работу в тайне.
Когда Гаусс в 1795 году стал гёттингенским студентом, он живо заинтересовался вопросом постулата параллельности. Один из преподавателей Гаусса – Абрахам Кёстнер – увлекался на досуге коллекционированием литературы по истории постулата. У Кёстнера даже был студент Георг Клюгель, написавший диссертацию – анализ двадцати восьми неудачных попыток доказать постулат. И все же ни Кёстнер, ни кто другой не готовы были к тому, что подозревал Гаусс: что пятый постулат может быть недействителен. Кёстнер даже говаривал, что лишь сумасшедший стал бы сомневаться в состоятельности постулата. Гаусс держал свое мнение при себе, хотя, как выяснилось, записывал соображения в свой научный журнал, который обнаружили через сорок три года после смерти ученого. Позднее Гаусс пренебрежительно отозвался о Кёстнере, баловавшемся писательством: «Ведущий математик среди поэтов, ведущий поэт среди математиков» [149] .
Между 1813 и 1816 годами, уже преподавая математическую астрономию в Гёттингене, Гаусс наконец произвел решительный прорыв, которого ждали со времен Евклида: он составил уравнения, описывающие части треугольника в новом, неевклидовом, пространстве, чью структуру мы теперь называем гиперболической геометрией. К 1824 году Гаусс, похоже, разработал всю теорию целиком. 6 ноября того же года Гаусс написал Ф. А. Тауринусу [150] – юристу немалого ума, развлекавшемуся математикой: «Допущение, что сумма трех углов [в треугольнике] меньше 180°, приводит к особой геометрии, довольно отличной от нашей [т. е. евклидовой], что совершенно последовательно, и я развил ее вполне удовлетворительно…» Гаусс эту геометрию никогда не обнародовал и настаивал, чтобы ни Тауринус, ни кто иной не предавали его открытия огласке. Почему? Церкви Гаусс не боялся, он опасался ее пережитков – светских философов.