Вот как устроена Вселенная Пуанкаре: вместо бесконечной плоскости – конечный диск, вроде блина, но бесконечно тонкий и с идеальной круговой кромкой. «Точки» – такие штуки, которые считались точками со времен Декарта: местоположения, вроде кристалликов мелкого белого сахара. Линии Пуанкаре – вроде изогнутых бурых следов от сковородки. Если же говорить технически, эти линии – «любые дуги окружностей [164] , пересекающие границу диска под прямыми углами». Чтобы не путать их с линиями, которые нам подсказывает интуиция, станем называть их линиями Пуанкаре.
Собрав эту физическую картинку, Пуанкаре должен был придать смысл применимым к ней геометрическим понятиям. Одним из важнейших оказалась конгруэнтность – то самое докучливое свойство фигур, которое Евклид предписал нам проверять путем наложения. В своем четвертом «общем замечании» Евклид писал:
...
4. И совмещающиеся друг с другом равны между собой.
Как мы уже говорили, возможность перемещать фигуры в пространстве, не искажая их, нам гарантирована лишь при условии принятия евклидовой формы постулата параллельности. Поэтому применение общего замечания № 4 в рецепте конгруэнтности – ни-ни в неевклидовом пространстве. Решение Пуанкаре – интерпретировать конгруэнтность путем определения системы измерения длин и углов. Две фигуры в таком случае окажутся конгруэнтными, если длины их сторон и углы между ними совпадут. Вроде очевидно, да? Но все не так-то просто.
Определение способа измерения углов оказалось вполне лобовым. Пуанкаре определил угол между двумя линиями Пуанкаре как угол между их касательными в точке пересечения этих линий. А вот чтобы ввести определение длин – или расстояний, – Пуанкаре пришлось попотеть. С постижением этого понятия могут возникнуть трудности, поскольку Пуанкаре запихнул бесконечную плоскость в конечную область. Например, вспомним второй постулат:
...
2. Ограниченную прямую можно непрерывно продолжать по прямой.
Очевидно, применение обычного определения расстояний к блину делает постулат недействительным. Но Пуанкаре переопределил расстояние: новое пространство сжимается по мере приближения к его краям, и именно так конечная область превращается в бесконечную. На первый взгляд все просто, но Пуанкаре не мог просто взять и определить расстояние по своему произволу – чтобы стать приемлемым, его определение должно было удовлетворять многим требованиям. Например, расстояние между двумя точками должно быть всегда больше нуля. Кроме того, в точном математическом выражении, выбранном Пуанкаре, линия Пуанкаре должна была соединять любые две точки по кратчайшей траектории, возможной между ними (такие линии называются