Бигуди для извилин. Возьми от мозга все! (Латыпов) - страница 164

Принцип сведения к известному в естествознании восходит ещё к Аристотелю: он объяснял падение тел «понятным» желанием всех тел стремиться к центру Вселенной (по тогдашним представлениям — к центру Земли). В XIX веке Джеймс Клерк Максвелл пытался объяснять свои уравнения электромагнитного поля, сводя его к «понятным» шестерёнкам, заполняющим всё пространство «понятного» упругого эфира. Майкл Фарадей был убеждён, что силовые линии электрического или магнитного полей — «понятные» реальные упругие струны. Исааку Ньютону была совершенно понятна корпускулярная природа света. И это его убеждение в простоте и понятности такой механистической картины, затормозило развитие волновой оптики почти на два века! Вот так — действительно, перебарщивать в упрощении опасно.



Бигуди № 43

Когда в Париже появилась знаменитая впоследствии башня инженера Эйфеля, у нее было много противников. Ги де Мопассан был одним из наиболее известных её критиков (среди них были также известный композитор Шарль Гуно, Александр Дюма-сын и многие представители интеллигенции): он считал, что Эйфелева башня — бесполезная и чудовищная конструкция, оскорбляющая вид любимого города. Если во время прогулки взгляд писателя случайно падал на ажурные очертания башни, которую его друзья сравнивали с гигантской фабричной дымовой трубой, настроение его немедленно портилось. Поэтому он всё время искал место, откуда не мог бы видеть это невыносимое сооружение. Где найти такое место в Париже, не слишком удаляясь от красивейшего района Парижа — Марсова поля, где и установлена башня? Задачу знаменитый писатель решил просто — он нашёл, как сам выражался, «… единственное место во всём огромном Париже, откуда её не видно». Там он регулярно обедал. Где же это место? Как называется оно теперь (это уже вопрос на эрудицию)? Не кажется ли Вам, что Мопассан действовал, может быть и неосознанно, но в полном соответствии с «принципом матрёшки»?>57

Подключение переменных

Понятно, что в условии задачи много различных неизвестных, переменных величин (какие-нибудь X, Y, Z….). Сложность задачи в том и проявляется, что: а) этих неизвестных слишком много; б) непонятно, независимы ли они или как-то связаны между собой; в) что происходит, когда они меняют свои значения; г) в каких пределах они могут меняться.

Вот этот последний пункт имеет особое значение: если нам удаётся узнать, каких предельных значений достигают переменные величины, а затем увидеть, как меняется задача, переформулируется проблема, когда Х становится равен 0 (или когда часть механизма вообще удалена, или когда некий человек не то что опоздает на 5 минут, но не придёт совсем, или ещё что-либо) — тогда мы свели задачу к другой, родственной, но более простой задаче.