Высший замысел (Хокинг, Млодинов) - страница 34

Предположим, что, как и раньше, мы посылаем поток частиц через двухщелевую преграду и собираем данные о первом миллионе частиц, прошедших сквозь щели. Когда мы графически изобразим множество частиц, попавших в разные точки экрана, то получим интерференционный узор (см. ил., с. 73), а когда мы сложим фазы, соответствующие всем возможным путям от точки А — места старта частицы — до точки В — места ее регистрации на экране, — то обнаружим, что рассчитанная вероятность попадания в разные точки совпадает с этими данными.

Теперь предположим, что мы повторяем эксперимент, на этот раз направляя свет на щели так, чтобы мы знали промежуточный пункт — точку С, — через который прошла частица. (Точка С — это положение либо одной, либо другой щели.) Это называется «информация „который путь“», потому что она говорит нам о том, каким путем каждая частица перемещается из точки А в точку В — через щель 1 или через щель 2. Поскольку мы знаем, через какую щель прошла каждая частица, то в нашей сумме траектории для этой частицы будут теперь включать только те пути, которые проходят через щель 1, или только те, что проходят через щель 2. Сумма не будет учитывать траектории, проходящие через обе щели. Поскольку Фейнман объяснил интерференционную картину тем, что траектории, проходящие через одну щель, накладываются на траектории, проходящие через другую, то если вы включите свет, чтобы определить, через какую щель проходят частицы, тем самым лишая их другой возможности, вы получите исчезновение интерференционной картины. И действительно, когда проводился эксперимент, включение света изменяло результаты: вместо интерференционного узора, представленного на с. 73, возникала картина, приведенная на с. 72! Более того, мы можем изменять условия эксперимента, используя свет настолько слабый, что не все частицы взаимодействуют с ним. В этом случае мы можем получить информацию «который путь» только для некоторой группы частиц. Если мы затем разделим данные по частицам в соответствии с тем, получена или нет для них информация «который путь», то обнаружим, что данные, относящиеся к группе, для которой нет такой информации, создадут интерференционный узор, а данные, относящиеся к частицам другой группы — для которых есть информация «который путь», — интерференционной картины не дадут.

Это имеет важные последствия для нашего понимания «прошлого». В теории Ньютона прошлое принималось существующим как определенная последовательность событий. Если вы видите, что ваза, купленная вами в прошлом году в Италии, лежит разбитая на полу, а ваш малыш стоит над ней с растерянным видом, вы можете восстановить события, приведшие к этому случаю: маленькие пальчики не удержали вазу, она упала и, ударившись об пол, разлетелась на тысячу осколков. Действительно, имея полную информацию о настоящем, законы Ньютона позволяют воссоздать полную картину прошлого. Это согласуется с нашим интуитивным пониманием того, что у мира — плохо это или хорошо — имеется определяемое прошлое. Возможно, не было никого, кто наблюдал бы нечто в прошлом, тем не менее существование прошлого столь же несомненно, как если бы оно было запечатлено вами на серии фотоснимков. Но о квантовом бакиболе нельзя сказать, что он прошел вполне определенный путь от источника до экрана. Мы могли бы зафиксировать местоположение бакибола, наблюдая его, но в промежутке между нашими наблюдениями он проходит по всем возможным траекториям. Квантовая физика говорит нам, что, независимо от того, насколько полно наше наблюдение за настоящим, ненаблюдаемое прошлое, как и будущее, выглядит неопределенно и существует только как спектр возможностей. Согласно квантовой физике, Вселенная не имеет единственного прошлого, или единственной истории.