>ab.
Далее нам необходимо вспомнить об уравнении непрерывности. Суть его в том, что изменения со временем плотности вещества в данной точке равно скорости притока и оттока со всех сторон. Это один из законов сохранения, иначе его называют уравнением баланса, и он является следствием уравнений движения для вещества. Обобщение этого закона для всего тензора энергии-импульса в искривленном пространстве-времени означает, что он также должен удовлетворять закону сохранения.
3. Построение уравнений Эйнштейна
Теперь мы в состоянии построить уравнения гравитации в ОТО. Как мы рассказали в главе 6, в начале XX века было постулировано, что гравитационное взаимодействие выражается в искривлении пространства-времени. При этом пространство-время искривляется под воздействием материи, которая, в свою очередь, движется в этом искривленном собой пространстве-времени. Это и есть логическая основа для построения уравнений общей теории относительности. Но как их построить правильно?
Логика очевидна: нужно связать тензор энергии-импульса материи с кривизной пространства-времени. Самый простой и очевидный способ: отнести T>ab в правую часть уравнений, а левую определить как некую комбинацию компонент тензора кривизны. Но как это сделать? Дело в том, что все уравнения вместе (гравитационные уравнения и уравнения для материи) должны быть совместны, иначе не будет существовать решений. Но как мы уже отметили, анализ уравнений материи в искривленном пространстве-времени приводит к выводу, что тензор энергии-импульса материи должен удовлетворять закону сохранения (непрерывности). Но тогда, чтобы все уравнения были совместны, нужно найти такую комбинацию из величин, связанных с кривизной, и которую мы собираемся написать в левой части уравнений, чтобы она тождественно удовлетворяла такому же закону сохранения. Такая комбинация была найдена – это так называемый тензор Эйнштейна G>ab, построенный из компонент тензора Римана, а в конечном итоге зависящий от метрического тензора. Тогда уравнения для гравитационного поля записываются в виде:
G>ab = κT>ab.
Здесь κ – постоянная Эйнштейна, которая выражается через ньютонову гравитационную постоянную G и скорость света c: κ = 8πG/c>4. Эти уравнения были построены и представлены Эйнштейном в работах 1915 и 1916 годов на основании сображений, изложенных выше. Практически одновременно они были представлены немецкими математиком Давидом Гильбертом.
4. Решение уравнений Эйнштейна
Но если есть уравнения, значит их нужно решать. То есть при ограничениях и условиях каждой конкретной задачи или модели нужно найти метрические коэффициенты в каждой точке пространства-времени и тем самым определить его геометрические свойства. Также необходимо найти, как в этом пространстве-времени распределена, движется и взаимодействует материя. Система гравитационных и материальных уравнений решается