Гравитация. От хрустальных сфер до кротовых нор (Петров) - страница 93

, их массы много меньше звездных, а минимальная величина ограничивается только квантовыми принципами. Их часто и называют квантовыми черными дырами, поскольку они (возможно) должны подчиняться законам квантовой механики. Такие дыры, мы уже понимаем, не могут образоваться обычным образом в результате коллапса. Но тогда как? Одним из наиболее вероятных механизмов является генерация черных дыр на ранних стадиях эволюции Вселенной, когда плотность материи и ее флуктуации были чрезвычайно велики. Такие черные дыры называют первичными. Некоторые варианты теории квантовой гравитации не исключают рождение микродыр при высокоэнергичных взаимодействиях в современную эпоху. Предполагается, что это могут быть взаимодействия космических лучей с атмосферой, либо взаимодействия частиц в ускорителях типа Большого адронного коллайдера. Но все эти предсказания пока остаются гипотетическими.

Упомянув о черных микродырах, нельзя не сказать несколько слов об излучении, теоретически предсказанном Стивеном Хокингом, известным английским теоретиком. Это излучение, правда, имеет больше отношения к квантовой теории поля и термодинамике, чем к чисто гравитационным явлениям, но прямо связано с черными дырами. Что же это такое? Квантовая теория поля утверждает, что, в согласии с принципом неопределенности, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы. Гравитационное поле рядом с горизонтом увеличивает энергию виртуальных (короткоживущих) пар в вакууме, превращая их в реальные (долгоживущие). Один из компонентов пары становится реальной частицей снаружи (и вблизи) горизонта событий и, имея положительную энергию, может уйти в бесконечность; другой появляется внутри (и вблизи) горизонта и падает с отрицательной энергией внутрь черной дыры (см. рис. 8.5). В итоге черная дыра становится источником непрерывного потока частиц, уходящего в бесконечность. При формировании такого излучения никакая частица не пересекает горизонта событий, который тем самым по-прежнему обладает свойствами клапана.

Этот эффект и называется излучением Хокинга или испарением черных дыр. Оказывается, что скорость испарения обратно пропорциональна массе черной дыры. То есть, чем дыра меньше, тем быстрее испаряется, а на конечной стадии, буквально, происходит вспышка. Большинство исследователей сходятся в том, что в современную эпоху уже нет первичных черных дыр – все они успели испариться. Большим же черным дырам такая участь не грозит, поскольку они испаряются медленно, а из окружающего пространства, так или иначе, получают дополнительную энергию. Одним из постоянных источников пополнения массы является реликтовое электромагнитное излучение. Оно является результатом ранних стадий эволюции Вселенной, имеет микроволновой диапазон и температуру 2,73 К. Исходя из этих данных, определяется граничная масса черной дыры, когда испарение Хокинга компенсируется притоком массы извне – она приблизительно равна массе Меркурия.