Накопительные кольца позволяют изменять энергию электронов, а значит, и энергию испускаемых рентгеновских лучей. Подобная перестраиваемость пучка лучей позволяет экспериментаторам изучать практически все известные свойства материалов – прочность, магнетизм, тепло- и электропроводность, а также следить за химическими реакциями.
Интересно, что развитие научных аспектов метода шло параллельно с технологическими прорывами. Увеличение яркости источников рентгеновских лучей происходило заметно интенсивнее, чем быстродействие компьютеров, которое обычно приводится в качестве примера безудержного роста. Яркость источников, построенных за последние пять лет в различных странах, превышает возможности предшествующего поколения в сто раз, а Солнца – в миллиард раз.
Восемь современных источников синхротронного излучения активно работают, а еще два – заработают в ближайшее время. Кроме того, продолжает действовать около сорока установок (читай – ускорителей) предыдущего поколения. Стоимость новой установки велика – от ста миллионов до миллиарда долларов, но интерес к ним постоянно растет, поскольку ультраяркие рентгеновские лучи должны помочь ученым лучше понять строение кристаллов, молекул, белков, полупроводников и сил, связывающих их в одно целое.
Примерно сто лет ученым известно, что заряженные частицы излучают, когда ускоряются, замедляются или меняют направление движения. Таким образом, даже при равномерном движении по кругу электроны постоянно излучают рентгеновские лучи. Впервые синхротронное излучение было обнаружено полвека назад на ускорителе под названием синхротрон – отсюда и название. Встречается оно и в космосе. К примеру, Крабовидная туманность испускает к нам мощные потоки рентгеновских лучей, которые могли возникнуть только в результате ускорения заряженных частиц в мощных магнитных полях.
Камера синхротрона достигает нескольких десятков километров в длину, она окружена сотнями магнитов, которые форсируют пучки и изгибают их траектории. На небольших скоростях частицы излучают мало, на малых частотах и под разными углами. Когда скорость растет и приближается к скорости света, интенсивность, частота и узконаправленность излучения тоже растут. Испускается излучение по касательной к траектории движения заряженных частиц. Излучение особенно интенсивно для частиц с небольшой массой, таких как электроны и позитроны.
Накопительные кольца – это особая разновидность синхротрона, в которой частицы могут вращаться на одной орбите много часов. До большой скорости их обычно разгоняет другой ускоритель. В Лоуренсовской национальной лаборатории в Беркли электроны крутятся на скорости 0,99999996 от скорости света.