Квантовая механика I (Фейнман) - страница 50

Базисные состояния ортогональны друг другу — амплитуда пребывания в одном, если вы находитесь в другом, есть нуль:

Амплитуда перехода из одного состоя­ния в другое комплексно сопряжена амп­литуде обратного перехода

Мы немного поговорили о том, что базис для состояний может быть не один и что можно использовать (4.1), чтобы пе­рейти от одного базиса к другому. Пусть, например, мы знаем амплитуды <iS|y> обнаружения состояния y в лю­бом из базисных состояний i базисной системы S, но затем решаем, что лучше описывать состояние в терминах другой совокупности базисных состояний — скажем, состояний j, при­надлежащих к базису Т. Мы тогда можем подставить в общую формулу (4.1) jT вместо c и получить

Амплитуды обнаружения состояния (y) в базисных состояниях (jТ) связаны с амплитудами его обнаружения в базисных со­стояниях (iS) совокупностью коэффициентов <jT|iS>. Если базисных состояний N, то таких коэффициентов всего N>2. Эту совокупность коэффициентов часто называют «матрицей преобразования от представления S к представлению Т». Математически это выглядит страшновато, но стоит все чуть обозначить иначе и оказывается, что ничего страшного нет. Если обозначить через С; амплитуду того, что состояние y находится в базисном состоянии iS, т. е. C>i=<iS|y>, а через C'>jназвать соответствующие амплитуды для базисной системы Т. т. е. С>j=<jT|y>, то (4.4) можно записать в виде

где R>jiто же самое, что и <jT|iS>. Каждая амплитуда C>jесть сумма по всем i одного ряда коэффициентов R>ji , умно­женных на каждую амплитуду С>i. Это выглядит так же, как преобразование вектора от одной системы координат к другой.

Но не будем слишком долго увлекаться абстракцией. Мы уже приводили парочку примеров этих коэффициентов для случая спина 1, и вы сами можете разобраться, как ими пользоваться практически. Но, с другой стороны, у квантовой механики существует очень красивое качество: из того факта, что состоя­ний только три, используя лишь свойства симметрии простран­ства относительно вращений она умеет чисто отвлеченным пу­тем вычислить эти коэффициенты. Приводить на столь ранней стадии эти рассуждения было бы нехорошо: прежде чем вы «вер­нулись бы на землю», вы могли бы утонуть в новом море абстрак­ций. Однако все это так красиво, что мы в свое время это не­пременно проделаем.

В этой же главе мы покажем вам, как можно получить коэффициенты преобразований для частиц со спином >1/>2. Мы выбрали этот случай потому, что он проще спина 1. Задача состоит в том, чтобы определить коэффициенты R>jiдля частицы, или атомной системы, которая в аппарате Штерна — Герлаха расщепляется на два пучка„ Мы собираемся вывести все коэф­фициенты для преобразования от одного представления к дру­гому путем чистого рассуждения плюс несколько предположе­ний.