Квантовая механика I (Фейнман) - страница 49

треть — в состоянии (0S) и треть — в состоянии (-S). Для пребывающих в состоянии (+S) амплитуда пройти сквозь А есть А|+S>, а вероят­ность |А|+S>|>2. То же и для других. Общая вероят­ность тогда равна

Но почему мы пользовались S, а не Т или каким-нибудь другим представлением? Дело в том, что, как это ни странно, ответ не зависит от того, каким было исходное разложение; он один и тот же, если только мы имеем дело с совершенно случайными ориентациями. Таким же образом получается, что

для любого c. (Докажите-ка это сами!)

Заметьте, что неверно говорить, будто входные состояния обладают амплитудой Ц>1/>3быть в состоянии (+S), Ц>1/>3 в состоянии (0S)и Ц>1/>3в состоянии (-S); если бы это было так, были бы допустимы какие-то интерференции. Здесь вы просто не знаете, каково начальное состояние; вы обязаны думать на языке вероятностей, что система сперва находится во всевоз­можных мыслимых начальных состояниях, и затем взять средне­взвешенное по всем возможностям.


* Число базисных состояний n может оказаться (и, вообще говоря, бывает) равным бесконечности.


* И в самом деле, для атомных систем с тремя или более базисными состояниями существуют другие типы фильтров (совершенно непохожие на приборы Штерна —Герлаха), которые можно было бы употребить для выбора других совокупностей базисных состояний (но при том же общем иx числе).

* Из этого опыта мы на самом деле не можем заключить, что а= 1, а видим только, что |а|>2=1, следовательно, а может быть e>i>d, но можно показать, что при выборе d=0 мы ничего существенного здесь не по­теряли.

* На языке наших прежних обозначений


* Мы не собираемся вкладывать в слова «базисное состояние» что-либо сверх того, что здесь сказано. Не следует переводить «базис» как «основу» и хоть в каком-то смысле считать их «основными состояниями». Слово «базис» понимается как «система описания», скажем, в таком смыс­ле, как в выражении «число в десятичной системе».


* Произносить надо так: (+S)—«плюс-S»; (0S) — «нуль-S»; (-S)— «минус-S».

 

 

Глава 4

СПИН ОДНА ВТОРАЯ


§ 1. Преобразование амплитуд

§ 2. Преобразование к повернутой системе координат

§ 3. Повороты вокруг оси z

§ 4. Повороты на 180° и на 90 вокруг оси у

§ 5. Повороты вокруг оси x

§ б. Произвольные повороты


§ 1. Преобразование амплитуд

В предыдущей главе мы, пользуясь в ка­честве примера системой со спином 1, набросали общие принципы квантовой механики.

Любое состояние y можно описать через совокупность базисных состояний, задав амплитуды пребывания в каждом из них.

Амплитуда перехода из одного состоя­ния в другое может быть в общем слу­чае записана в виде суммы произведений амплитуд перехода в одно из базисных со­стояний на амплитуды перехода из этих базисных состояний в конечное положе­ние; в сумму непременно входят члены, относящиеся к каждому базисному состоя­нию;