Квантовая механика I (Фейнман) - страница 54

>jiзависит только от поворота, который переводит S в Т, потому что общим для фиг. 4.2, а и б, очевидно, является трехмерный поворот, переводящий прибор S в положе­ние прибора Т. Когда матрица преобразования R>jiзави­сит, как в нашем случае, только от поворота, ее называют матрицей поворота.

Для следующего шага нужно еще немного информации. Пусть мы добавили третий прибор (назовем его U), стоящий вслед за Т под каким-то произвольным углом (фиг. 4.3, а).

Фиг. 4.3. Если Т «открыт до отказа», то б эквивалентно а.

(Все это начинает выглядеть устрашающе, но в этом-то и прелесть отвлеченного мышления: самые сверхъестественные опыты можно ставить, просто проводя новые линии!) Что же пред­ставляет собой преобразование S®Т®U? Фактически нас интересует амплитуда перехода из некоторого состояния по отношению к S к некоторому другому состоянию по отношению к U, если известны преобразования от S к Т и от Т к U, Поин­тересуемся сперва опытом, в котором в Т открыты оба канала. Ответ можно получить, дважды подряд применяя (4.5). Для перехода от S-представления к T-представлению имеем

где верхние индексы TS нужны, чтобы отличать это R от R>UT, когда мы будем переходить от Т к U.

Обозначая амплитуды появления атома в базисных состоя­ниях представления U через C">k, можно связать их с T-амплитудами, применяя (4.5) еще раз; получим

Теперь можно из (4.6) и (4.7) получить преобразование от S прямо к U. Подставляя С'>jиз (4.6) в (4.7), имеем

Или, поскольку в R>UT>kjотсутствует i, можно поставить сум­мирование по i впереди и написать

Это и есть формула двойного преобразования.

Заметьте, однако, что, пока пучки в Т не загораживаются, состояния на выходе из Т те же, что и при входе в него. Мы могли бы с равным успехом делать преобразования из S-представления прямо в представление U. Это значило бы, что прибор U по­ставлен прямо за S, как на фиг. 4.3, б. В этом случае мы бы написали

где R>US>kiкоэффициенты, принадлежащие этому преобразо­ванию. Но ясно, что (4.9) и (4.10) должны приводить к одинако­вым амплитудам С">k, причем независимо от того, каково было то начальное состояние j, которое снабдило нас амплитудами С>i. Значит, должно быть

Иными словами, для любого поворота S®U базиса, если рас­сматривать его как два последовательных поворота S®Т и Т®U, можно получить матрицу поворота r>us>kiиз матриц двух частных поворотов при помощи формулы (4.11). Если угод­но, (4.11) следует прямо из (4.1) и представляет собой лишь другую запись формулы:

Для полноты добавим еще следующее. Но не думайте, что это будет что-то страшно важное; если хотите, переходите, не читая, прямо к следующему параграфу. Надо сознаться, что то, что мы сказали, не совсем верно. Мы не можем на самом деле утверждать, что (4.9) и (4.10) обязаны привести к