Квантовая механика I (Фейнман) - страница 77

>+(0)=1, и это вполне правильно, потому что сперва и было предположено, что при t=0 мюон был в состоянии (+x).

Вероятность Р>+того, что мюон окажется в состоянии (+х) в момент t, есть >+)>2, т. е.

Вероятность колеблется от нуля до единицы, как показано на фиг. 5.10.

Фиг. 5.10. Временная зависимость вepoятности того. что частица со спином >1/>2 окажется в состоянии (+) по отношению оси х.

Заметьте, что вероятность возвращается к единице при mBt/h=p (а не при 2p). Из-за того что косинус возведен в квадрат, вероятность повторяется с частотой 2mВ/h.

Итак, мы обнаружили, что шанс поймать в электронном счетчике, показанном на фиг. 5.9, распадный электрон перио­дически меняется с величиной интервала времени, в течение которого мюон сидел в магнитном поле. Частота зависит от магнитного момента (Л. Именно таким образом и был на самом деле измерен магнитный момент мюона.

Тем же методом, конечно, можно воспользоваться, чтобы ответить на другие вопросы, касающиеся распада мюона. На­пример, как зависит от времени t шанс заметить распадный электрон в направлении у, под 90° к направлению х, но по-прежнему под прямым углом к полю? Если вы решите эту за­дачу, то увидите, что вероятность оказаться в состоянии (+у) меняется как cos>2{(mBt/h)-(p/4)}; она колеблется с тем же периодом, но достигает максимума на четверть цикла позже, когда mВt/h=p/4. На самом-то деле происходит вот что: с те­чением времени мюон проходит через последовательность со­стояний, отвечающих полной поляризации в направлении, ко­торое непрерывно вращается вокруг оси z. Это можно описать, говоря, что спин прецессирует с частотой

Вам должно становиться понятно, в какую форму выли­вается квантовомеханическое описание, когда мы описываем поведение чего-либо во времени.

* Если вы пропустили гл. 4, то можете пока просто считать (5.35) невыведенным правилом. Позже, в гл. 8, мы разберем прецессию спина подробнее, будут получены и эти амплитуды.


* Мы предполагаем, что фазы обязаны иметь одно и то же значение в соответствующих точках в двух системах координат. Впрочем, это весьма тонкое место, поскольку в квантовой механике фаза в значитель­ной степени произвольна. Чтобы до конца оправдать это предположение, нужны более детальные рассуждения, учитывающие интерференцию двух или нескольких амплитуд.

 

 

Глава 6

ГАМИЛЬТОНОВА МАТРИЦА


§ 1. Амплитуды и векторы

§ 2. Разложение век­торов состояний

§ 3. Каковы базисные состояния мира?

§ 4. Как состояния меняются во времени

§ 5. Гамильтонова матрица

§ б. Молекула аммиака

Повторить: гл. 49) (вып. 4) «Собст­венные колеба­ния»