Квантовая механика I (Фейнман) - страница 76

останавливаются, а чуть позже распадаются.

Фиг.. 5.9.Опыт с распадом мюона.

Испу­скаемые электроны выходят, вообще говоря, во всех мыслимых направлениях. Представим, однако, что все мюоны будут вхо­дить в тормозящий блок А так, что их спины будут повернуты в направлении х. Без магнитного поля там наблюдалось бы какое-то угловое распределение направлений распада; мы же хотим знать, как изменилось бы это распределение при наличии магнитного поля. Можно ожидать, что оно как-то будет меняться со временем. То, что получится, можно узнать, спросив, ка­кой будет в каждый момент амплитуда того, что мюон обнару­жится в состоянии (+x).

Эту задачу можно сформулировать следующим образом: пусть известно, что в момент t=0 спин мюона направлен по +х; какова амплитуда того, что в момент т он окажется в том же состоянии? И хотя мы не знаем правил поведения частицы со спином >1/>2 в магнитном поле, перпендикулярном к спину, но зато мы знаем, что бывает с состояниями, когда спины на­правлены вверх или вниз по полю,— тогда их амплитуды ум­ножаются на выражение (5.34). Наша процедура тогда будет состоять в том, чтобы выбрать представление, в котором ба­зисные состояния — это направления спином вверх или спи­ном вниз относительно z (относительно направления поля). И любой вопрос тогда сможет быть выражен через амплитуды этих состояний.

Пусть |y(t)> представляет состояние мюона. Когда он вхо­дит в блок А, его состояние есть |y (0)>, а мы. хотим знать |y (t)> в более позднее время t. Если два базисных состояния обозначить (+z) и (-z), то нам известны амплитуды <+z|y (0)> и <-z|y (0)> — они известны потому, что мы знаем, что |y (0)> представляет собой состояние со спином в направлении (+x). Из предыдущей главы следует, что эти амплитуды равны

Они оказываются одинаковыми. Раз они относятся к положе­нию при t=0, обозначим их С>+(0) и С>-(0).

Далее, мы знаем, что из этих двух амплитуд получится со временем. Из (5.34) следует

Но если нам известны C>+(t) и C>-(t), то у нас есть все, чтобы знать условия в момент t. Надо преодолеть только еще одно затруднение: нужна-то нам вероятность того, что спин (в мо­мент t)окажется направленным по +х. Но наши общие пра­вила учитывают и эту задачу. Мы пишем, что амплитуда пре­бывания в состоянии (+x) в момент t [обозначим ее A>+(t)]есть

или

Опять пользуясь результатом последней главы (или лучше равенством

* из гл. 3), мы пишем

Итак, в (5.37) все известно. Мы получаем

или

Поразительно простой результат! Заметьте: ответ согласуется с тем, что ожидалось при t=0. Мы получаем