В этом смысле математики естественным образом работают с многомерными пространствами, не ограничивая себя физической реальностью. Для них математические понятия существуют, если только они не являются логически противоречивыми. Вот почему, когда математики говорят о четырехмерном пространстве, им не нужно обязательно думать о пространстве-времени или о четвертом пространственном измерении.
* * *
РАЗМЕРНОСТЬ ВСЕЛЕННОЙ
Наши чувства говорят нам, что мы живем в трехмерном пространстве, а если мы добавим время, то можно считать, что наша Вселенная является четырехмерной. В настоящее время физики работают над теорией струн, которая предполагает, что наша Вселенная может существовать в пространстве более высоких размерностей: 10,11 или даже 26. Но размерности эти существуют в субатомных масштабах, поэтому они — вне нашей способности воспринимать их. Многие из нас не в состоянии даже представить их! Интересно, что Чарльз Хинтон уже в конце XIX в. говорил о такой возможности, излагая теорию четвертого измерения.
Теория струн до сих пор не доказана экспериментально, хотя уже произвела глубокую научную и философскую революцию. Ее противники утверждают, что ее невозможно полностью проверить и, следовательно, в действительности она вообще не является научной теорией. Это один из вопросов, на который может пролить свет Большой адронный коллайдер, построенный в ЦЕРНе.
Какая польза от многомерных пространств?
В области математической физики важность работы с многомерными пространствами уже давно стала очевидной. Французский математик Жозеф Луи Лагранж (1736–1813) в своей книге «Аналитическая механика» рассматривал механику в терминах многих координат (степеней свободы), включая время как отдельную координату. Впоследствии ирландский математик и астроном Уильям Роуэн Гамильтон (1805–1865) переписал уравнения механики для многомерных пространств.
Давайте рассмотрим следующий пример. Нам нужны четыре координаты для описания положения колеса, которое без скольжения движется вперед по поверхности: две координаты для описания точки касания колеса с поверхностью, одна — для угла поворота, и еще одна — для угла вращения вокруг продольной оси. Это делает пространство положений колеса четырехмерным. Если мы добавим движение, нам придется ввести еще четыре координаты для скорости. Таким образом, пространство положений колеса, движущегося по поверхности, имеет восемь измерений.
Эта диаграмма показывает, что пространство положений колеса, которое катится без скольжения по плоской поверхности, имеет четыре измерения. Координаты точек —