Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной? (Ибаньес) - страница 58

Стоит отметить два произведения, тесно связанные с четвертым измерением.

Один из них — короткий рассказ «…И построил он себе скрюченный домишко» (1940) Роберта Хайнлайна, в котором архитектор построил дом, являющийся разверткой гиперкуба в третьем измерении (мы остановимся на этом подробнее в следующей главе). Этот дом после постройки сложился обратно в четвертое измерение вместе с архитектором, который находился внутри. Гиперкуб также описывает Мадлен Л’Энгл в детском рассказе «Складка времени» (1962).

Глава 7. Визуализация четвертого измерения

Таким же образом, как мы можем изобразить на плоскости фигуру, имеющую три измерения, мы можем сделать это и для четырехмерной фигуры на поверхности с тремя (или двумя) измерениями. Мы даже можем изобразить эту фигуру в разных ракурсах и с разных точек зрения… [и изучая «целое» по этим частям] мы можем представить четвертое измерение.

Анри Пуанкаре. Наука и гипотеза (1902)


Многие думают, исходя из трехмерности нашего мозга (что вовсе не очевидно, так как, может быть, мозг в нашем мире является одним из сечений четырехмерного мозга), что четвертое измерение представить невозможно. Конечно, это сложная задача, но можно рассуждать, как предлагал Пуанкаре. Как, например, художники используют двумерное полотно для изображения трехмерных фигур или инженеры применяют несколько проекций для проектирования инструментов, машин и зданий, так и мы могли бы попытаться визуализировать четырехмерные объекты, «рисуя» их в трехмерных проекциях. Хотя даже имея «трехмерные картины», нарисованные в разных ракурсах, сложно представить, как выглядит четырехмерный объект.

В конце XIX и начале XX вв. одной из главных проблем многомерных пространств была их визуализация. Многие ученые пытались изобразить гиперкуб — четырехмерную версию куба. Исследованием гиперкуба и других n-мерных многогранников занимались такие специалисты, как Чарльз Хинтон, Клод Брэгдон, Вашингтон Ирвинг Стрингхем, Алисия Буль Стотт (сестра жены Хинтона), американец Генри Мэннинг (автор книги «Простое объяснение четвертого измерения»), француз Эспри Жуффре (автор нескольких работ о четвертом измерении), Анри Пуанкаре и многие другие. На самом деле методы визуализации четвертого измерения заключаются в переходе к трем измерениям с помощью различных проекций, сечений или разверток.

Эти методы уже были известны и широко использовались в начале XX в. Описывая различные методы визуализации, мы будем опираться на интуицию и, как и в других главах книги, использовать многомерные аналогии.