Том 19. Ипотека и уравнения. Математика в экономике (Арталь, Салес) - страница 74

влияют на значения Y, но не наоборот) или взаимозависимость (значения X влияют на значения Y и наоборот).

Изучение ковариации между двумя статистическими переменными можно начать с графических методов. На следующих диаграммах представлено множество точек, соответствующих парам значений переменных, для которых мы хотим определить наличие ковариации. Эта диаграмма называется диаграммой рассеяния.



Положительная линейная корреляция.



Отрицательная линейная корреляция.



Отсутствие корреляции.


Существуют два метода анализа ковариации между двумя статистическими переменными: регрессия и корреляция. При анализе корреляции рассчитывается числовой коэффициент, который используется как индикатор степени ковариации между двумя переменными, а при регрессионном анализе определяется математическая функция, описывающая ковариацию для всех значений переменных.

Вывод коэффициента корреляции для всей генеральной совокупности на основе анализа выборки, который обозначается R, выполняется на основе коэффициента корреляции r, рассчитанного для выборки. Этот процесс подробно изучен. По сути, можно рассмотреть как оценочное значение R и проанализировать, действительно ли оно является точным оценочным значением. Выборки из одной и той же генеральной совокупности можно формировать множеством способов, и коэффициент корреляции на каждой выборке будет отличаться. Коэффициенты корреляции r для всех возможных выборок являются значениями случайной величины, которая характеризуется собственным распределением.

* * *

КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ

Чтобы подтвердить исходное предположение, что между двумя переменными наблюдается корреляция (к такому выводу можно прийти, взглянув на диаграмму рассеяния), рассчитаем коэффициент корреляции. Для выборки из n пар значений (х>i, у>i) при i = 1, 2, 3…., n показателем линейной связи между переменными является — линейный коэффициент корреляции,



где х, у, σσ — средние значения и среднеквадратические отклонения, рассчитанные для переменных X и Y на выборке. Значения коэффициента корреляции r всегда находятся в интервале от -1 до 1. Если r = 1 или r = -1, то все точки, соответствующие выборке, лежат на одной прямой. Если значение r близко к 1 (или к -1), то между двумя переменными имеется очень сильная линейная зависимость. Если значение мало (близко к 0), то зависимость между двумя переменными практически отсутствует, за исключением случаев, когда на основе диаграммы рассеяния можно сделать вывод о наличии нелинейной корреляции.

Коэффициент r — безразмерная величина, не зависящая от единиц измерения значений