Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса (Голдберг) - страница 49

В таком контексте трудно даже определить, что такое «маловероятно». Обычно, когда мы говорим, что что-то маловероятно, то имеем в виду, что есть какая-то цепочка событий, которая приведет к такому финалу, и основываем вероятность на событиях в прошлом. А у начала вселенной таких событий не было.

Вот такова в общем и целом «гипотеза прошлого». Можно даже представить себе, что это закон природы — не исключено, что у всех вселенных в момент зарождения энтропия низкая. Однако, честно говоря, это не очень утешает. Вопрос пока открыт, но в воздухе витают кое-какие идеи поинтереснее, чем «в самом начале вселенная была с низкой энтропией, потому что так сложилось».

Например, очень может быть, что наша вселенная — не первая. Многие ученые, в том числе физики из Принстона Пол Штейнхардт, Нил Тьюрок и их коллеги, предположили, что у вселенной случаются периоды расширения. В числе свойств так называемого «экпиротического сценария»[36] — то, что каждый данный участок вселенной со временем растягивается все сильнее и сильнее. В такой вселенной в целом энтропия не уменьшается, но по мере расширения отдельного участка может несколько разбавиться. Может быть, наша вселенная — всего лишь маленький клочок «множественной вселенной» или «мультиверса» куда больших масштабов, общая энтропия в которой была и остается колоссальной.

Иногда роль множественной вселенной рассматривают с иной точки зрения. Шон Кэрролл, физик из Калифорнийского технологического института, считает, что время — это явление, развивающееся на наших глазах. Он полагает, что течение времени в нашей вселенной и во всех других «пузырьках», составляющих множественную вселенную, — это и есть увеличение энтропии:

Стрела времени — это следствие не того, что «энтропия увеличивается при движении в будущее», а того, что «энтропия при движении времени в одну сторону совсем не такая, как при движении в другую сторону».

Другие ученые пошли даже дальше. Например, голландский ученый Эрик Верлинде утверждает, что даже фундаментальные на первый взгляд феномены вроде гравитации следуют из Второго закона термодинамики и теории струн.

Все это очень занимательно, однако в науке подобные идеи не становятся общепринятыми. Лично я отношусь к ним несколько скептически. В следующей главе мы как следует поговорим о множественной вселенной, однако сделать это нам будет непросто отчасти потому, что непонятно, удастся ли нам когда-нибудь подтвердить существование «пузырьковых вселенных» непосредственно данными наблюдений или экспериментов.

Лично я из всего множества доступных вариантов выбираю гипотезу, согласно которой начальное состояние вселенной характеризовалось низкой энтропией просто потому, что так уж вышло. Я уже упоминал, что когда говоришь о начале времен, понятие вероятности теряет смысл, так что когда кто-то говорит, насколько маловероятно, что в начале вселенной энтропия была низка, не вполне понятно, чего следовало бы ожидать. Очень хорошо об этом сказал Ричард Фейнман: