Вместо этого настает утро второго дня – и все мужчины живы. Это информирует всех жителей в деревне о том, что неверных мужей более одного. И это, и безупречность королевы подразумевает, что неверных мужей должно быть по крайней мере два.
И если неверных мужей было бы только два, их жены убили бы их на второй день, а если бы их было три – жены бы убили их на третий день, и т. д. И если бы их было сорок восемь – их сорок восемь жен убили бы их на сорок восьмой день.
Сегодня уже сорок девятый день, и Моника, которая знает о сорока восьми неверных мужьях, должна быть удивлена тому, что в предыдущий день не произошло массового убийства. Единственное возможное объяснение (это все еще размышления Эдны о том, что должна была подумать Моника) – муж Моники как раз и есть сорок девятый герой адюльтера.
Таким образом, Эдна должна прийти к заключению, что всегда безупречно логичная Моника должна убить Макса к полуночи сорок девятого дня. Эдна может прийти к подобному же заключению относительно всех остальных женщин деревни. «Да, – думает Эдна, – на сорок девятый день произойдет кровавая баня».
И вот настал сорок девятый день, и все еще ничего не произошло. Единственное возможное объяснение теперь – это то, что Моника и все остальные женщины знали о сорок девятом неверном муже. Это не мог быть Макс. Это мог быть только один мужчина: собственный муж Эдны Эдгар!
Итак, на пятидесятый день Эдна должна прийти к заключению, что ее муж неверен ей. Все остальные женщины сделают о своих мужьях такой же вывод.
Ответ на головоломку – ничего не произойдет в первые сорок девять дней, а на пятидесятый день все пятьдесят жен убьют своих мужей.
Это шедевр среди логических головоломок. Однако нельзя с уверенностью утверждать, что эта задача так же хороша, как инструмент при отборе кандидатов на работу. Первое известное упоминание об этой головоломке в печати – опубликованная в 1958 году книга физика Джорджа Гамоу и математика Марвина Стерна «Математические головоломки» (Puzzle-Math). В их версии речь шла о неверных женах. С тех пор эта головоломка широко использовалась. К 1980-м годам речь уже идет о неверных мужьях, и головоломка становится темой исследования одной из научных лабораторий IBM. Джон Аллен Паулос дал в книге «Жило-было число» (Once upon a Number), опубликованной в 1998 году, версию, так похожую на ту, что используется Microsoft, что, возможно, корпорация использовала именно этот источник.
Я подозреваю, что типичный читатель этой книги прочитал головоломку, подумал о ней немного, не придя ни к какому выводу, и заглянул в ответ: «Вот это да! Какая замечательная головоломка!» Потом, возможно, загадал ее двум-трем друзьям, которые также не сумели ее решить, но согласились, что у нее потрясающее решение, когда узнали о нем. Популярность логической головоломки никак не зависит от того, может кто-то ее решить или нет.