С появлением новых дифракционных решеток стало возможным измерять спектры со все большей точностью. Это можно сравнить с подбором очков: когда человек с плохим зрением идет к окулисту, то вначале видит лишь расплывчатые фигуры, а затем, примеряя линзы, постепенно начинает различать очертания букв. Аналогично, с ростом точности наблюдений атомные спектры демонстрировали все более сложную структуру. На рубеже 1920-х годов ученые смогли увидеть, что некоторые линии спектров атомов щелочных металлов, в частности натрия и калия, были двойными, а линии спектров щелочноземельных металлов, к примеру магния и кальция, – даже тройными. Испанский ученый Мигель Каталан, исследовав спектры магния и хрома, показал, что существуют кратные линии спектров, состоящие из четырех, шести и даже восьми линий. Кроме того, было известно, что в электростатическом или магнитном поле линии спектра также удваивались. Таким образом, в действительности модель Бора описывала атомный спектр водорода весьма приближенно. Однако это был первый важный шаг в правильном направлении.
Модели Бора, Зоммерфельда и тонкая структура
Представим некоторые формулы, описывающие атом водорода. Энергия стационарного состояния в модели Бора определяется выражением
где n – главное квантовое число, R – постоянная Ридберга. Бор получил выражение
где m – масса электрона, е – его электрический заряд, h – редуцированная постоянная Планка.
В расширенной модели Зоммерфельда использовалось второе квантовое число, которое мы обозначили буквой l, принимающее значения от 1 до n. С помощью релятивистских поправок Зоммерфельд определил, что энергия стационарного состояния определяется как
где α – постоянная тонкой структуры. Большее значение поправки, соответствующее квантовым числам n = 1 и l = 0, равняется 1 + α²/4 и равно 1,000013…, то есть примерно одной стотысячной.
Эффект Зеемана и модель каркаса атома
Спустя несколько недель после того, как Зоммерфельд допустил Гейзенберга на свои семинары, он предложил новому студенту задачу, которую не мог решить сам. В 1895 году голландский физик Питер Зееман (1865-1943) обнаружил, что в присутствии магнитного поля некоторые спектральные линии утраиваются. Появление дополнительных линий не зависело от анализируемого вещества и определялось магнитным полем. Этот эффект можно было объяснить с помощью законов классической физики, однако ученых интересовала его интерпретация в рамках обобщенной модели атома, предложенной Зоммерфельдом. Электрон, движущийся по замкнутой орбите, эквивалентен электрическому току в катушке, который, в свою очередь, порождает магнитное поле. Это магнитное поле взаимодействует с внешним магнитным полем, при этом энергия их взаимодействия зависит от угла между ними. Зоммерфельд предположил, что этот угол также описывается квантовыми законами и может принимать только дискретные значения, определяемые неким квантовым числом. Это число Зоммерфельд назвал магнитным числом и обозначил его буквой m. Таким образом, в магнитном поле энергия стационарного состояния зависела от трех квантовых чисел: n, l, m. Далее Зоммерфельд попытался рассчитать частоты перехода на основе разности энергий и сравнить их с наблюдаемыми линиями спектра.