Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? (Фаус) - страница 24

Его метод был корректным, однако переставал работать, когда наблюдались другие удвоенные линии, положение которых определялось не только магнитным полем, но и исходным спектром. Это явление получило название аномального эффекта Зеемана. Его объяснение Зоммерфельд и поручил Гейзенбергу. В случае классического эффекта Зеемана достаточно было описать каждое стационарное состояние с помощью трех квантовых чисел (n,l, m), рассмотрев геометрию орбит электронов. Зоммерфельд перешел к рассмотрению четвертого квантового числа, которое назвал внутренним, и попытался представить спектральные термы в виде частного целых чисел так, чтобы их разность соответствовала результатам наблюдений. После нескольких безуспешных попыток он передал задачу Гейзенбергу, который начал обучение всего несколько недель назад. Для решения проблемы юноше требовалось изучить совершенно новую в то время квантовую теорию, а также основы физики.


Катушки с током в магнитном поле

Катушка, по которой течет электрический ток, ведет себя как магнитный диполь, то есть аналогично стрелке компаса. На рисунке изображена прямоугольная катушка (впрочем, ее форма не имеет значения). Введем вектор →A, перпендикулярный плоскости катушки, длина которого будет равна площади катушки. Если через катушку течет ток силой l, дипольный момент катушки определяется как вектор →μ=l→A. Энергия взаимодействия с магнитным полем B равна скалярному произведению – →μ• →B, то есть μBcosα, где α – угол между векторами →μ и →B. Теперь рассмотрим электрон, который движется по круговой орбите радиуса r со скоростью T=2πr/v. Момент импульса электрона на орбите будет задаваться вектором →l = m→v•→r, перпендикулярным плоскости орбиты. Движение заряженного электрона по орбите будет эквивалентно электрическому току l=-е/Т в круговой катушке радиуса r. Магнитный момент будет обозначаться вектором, перпендикулярным плоскости катушки. Чтобы вычислить модуль этого вектора, нужно умножить силу тока l на площадь катушки πr² . Результат будет пропорционален моменту импульса электрона и может быть записан так:


В декабре Гейзенбергу удалось получить схему, описывавшую результаты экспериментов. Однако радость Зоммерфельда померкла сразу же, едва тот увидел, что Гейзенберг применил внутренние квантовые числа с полуцелыми значениями (иными словами, нечетные числа, разделенные на 2, то есть 1/2, 3/2, 5/2 и т.д.). Профессор сказал: единственное, что достоверно известно в квантовой теории, – это то, что квантовые числа могут принимать только целые значения. Однако он оценил, насколько точно модель Гейзенберга описывала результаты экспериментов, и начал длительное обсуждение допустимости полуцелых квантовых чисел. Саркастичный Паули заметил, что после полуцелых чисел настанет черед четвертей, затем восьмых частей и так далее. Спустя несколько месяцев Зоммерфельд получил письмо от своего старого помощника Альфреда Ланде, который сообщал, что аномальный эффект Зеемана можно объяснить с помощью полуцелых квантовых чисел. Зоммерфельд ответил, что, по его мнению, результаты Ланде требуют доработки, и добавил: «Ваше новое представление прекрасно согласуется с тем, что обнаружил, но не опубликовал один из моих студентов (первокурсник)». И Гейзенберг, и Ланде умели играть с числами. Они не знали, какой физический смысл могут иметь полуцелые квантовые числа, однако предложенная ими концепция позволяла обнаружить некий порядок в наблюдаемых линиях спектра. Позже было установлено, что полуцелые квантовые числа связаны с одним из свойств электрона – спином.