Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? (Фаус) - страница 45

Классическая частица описывается уравнениями, задающими ее положение и скорость в любой момент. Однако эти понятия имеют смысл для атомных частиц только в том случае, если мы говорим об их измерении. Иными словами, физик знает только то, что может измерить, – в этом и заключается принцип неопределенности.

Некоторые расчеты привели Гейзенберга к следующему результату. Допустим, что в эксперименте мы определили положение частицы x с точностью Δx, а также импульс частицы p с точностью Δp. Это означает, что положение частицы с некоторой вероятностью заключено на интервале между x – Δx и x + Δx. Может ли точность быть сколь угодно малой? Гейзенберг доказал, что это невозможно, так как произведение этих величин сопоставимо с постоянной Планка. Это соотношение записывается так: Δx • Δp ~ h. Это выражение передает взаимное ограничение: чем меньше будет один множитель, тем больше будет другой, чем точнее мы определим одну из этих величин, тем меньше будет точность измерения другой. Было строго доказано, что это соотношение имеет вид неравенства:

Δx – Δp=>h/2.

Произведение величин, показывающих, с какой точностью можно измерить положение частицы и ее импульс, ограничено редуцированной постоянной Планка h = h/(2π), разделенной на 2.

Единственный вывод из этого принципа, не противоречащий квантовой механике, заключается в том, что положение и момент электрона нельзя одновременно измерить с произвольной точностью: чем точнее мы определим положение частицы, тем менее точно мы сможем определить ее импульс в этот момент времени, и наоборот. Подобные отношения связывают и другие пары величин, к примеру энергию и время или момент импульса и угол, – такие величины называются канонически сопряженными. Их произведение измеряется в тех же единицах, что и действие, то есть, подобно постоянной Планка, определяется как произведение энергии на время. Напомним один из результатов, полученных Борном и Йорданом: операция умножения матриц, соответствующих этим величинам, не обладает коммутативностью, и это свойство доказывает приведенное выше неравенство.

Бор с энтузиазмом отнесся к заключениям Гейзенберга, так как увидел в них проявление корпускулярно-волнового дуализма. Однако, прочитав рукопись, он обнаружил ошибку, которая стала предметом долгих и жарких споров двух ученых. Эта ошибка содержалась не в рассуждениях или выводах, а в примере с гамма-лучевым микроскопом, который Гейзенберг использовал для объяснения полученных результатов. Дискуссия Бора и Гейзенберга продолжалась несколько дней и осложнялась тем, что статья уже была опубликована. Позднее Гейзенберг признавался: «Я помню, что все закончилось, когда я просто расплакался, не в силах справиться с давлением Бора». И все же Гейзенбергу пришлось признать правоту оппонента. В примечании в конце статьи Гейзенберг упомянул, что Бор помог ему увидеть некоторые важные аспекты: