Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? (Фаус) - страница 47


Разрешающая способность микроскопа – это наименьшее расстояние между двумя точками, которые можно различить с его помощью. Именно от этой характеристики зависит неточность при определении положения электрона. Изображение точки, наблюдаемой через микроскоп, представляет собой ряд концентрических окружностей. Согласно законам волновой оптики, минимальное расстояние, на котором можно различить две точки, определяется по формуле Δx ~ λ/sinε, то есть как отношение длины волны и синуса половины угла апертуры объектива ?. В действительности это выражение не вполне точное – его необходимо умножить на коэффициент, который зависит от геометрии системы линз. Однако значение этого коэффициента близко к единице, поэтому им можно пренебречь. С другой стороны, в силу эффекта Комптона при столкновении с фотоном электрон получает импульс в направлении x, зависящий от импульса фотона. Точно определить направление фотона нельзя – возможные направления будут располагаться внутри воображаемого конуса, определяемого лучами, попадающими в микроскоп. Из кинематических и геометрических соображений можно сделать вывод: Δр ~ h/λ sinε. Следовательно, имеем прежний результат Δх • Δр ~ h. Читатель может спросить: зачем стоило приводить более сложные рассуждения, чтобы получить тот же результат? Возможно, об этом думал и Гейзенберг в споре с Бором, однако настойчивость последнего была вызвана концептуальной важностью корпускулярно-волнового дуализма. В этом случае он проявляется в двух аспектах одного и того же эксперимента. Волновая природа света учитывается при определении разрешающей способности микроскопа, корпускулярная природа – при определении импульса фотона.


Некоторые философские проблемы

В конце статьи Гейзенберг прокомментировал некоторые важные следствия выведенных им неравенств. Напомним, что несколькими годами ранее Нильс Бор в отчаянии предположил, что основные законы физики, в частности закон причинно- следственной связи и законы сохранения импульса и энергии, на атомном уровне выполняются не для отдельных взаимодействий, а в среднем для большого числа частиц. Эксперименты показали, что это предположение было неверным, но Гейзенберг признал, что принцип причинно-следственной связи в квантовой механике действительно выглядит несколько иначе.

Уравнения классической физики позволяют определить изменение состояния системы с течением времени по известным положениям и импульсам всех ее частей в начальный момент времени. Этот принцип изложил французский ученый Пьер- Симон Лаплас в 1814 году применительно ко всей Вселенной: