К концу XIX века другие математические теории вытеснили кватернионы, но Гамильтон был бы безумно счастлив узнать, что на протяжении последних нескольких десятилетий они снова широко используются. Кватернионы применяются в процессе компьютерных расчетов трех осей вращения объектов, находящихся в полете, — продольной, поперечной и вертикальной. Различные организации и компании, работающие в таких отраслях, как аэронавтика и компьютерная графика, от NASA до Pixar, используют кватернионы в своем программном обеспечении.
Невозможно создать дееспособную систему счисления с пятью, шестью или семью упорядоченными действительными числами, но для восьми чисел такая система существует — она обозначается термином «октонион» и записывается как (a, b, c, d, e, f, g, h). Октонион — это идея, ждущая воплощения, и, скорее всего, ждать осталось недолго. Один из основных претендентов на роль «теории всего», объединяющей квантовую механику и Общую теорию относительности, — это М-теория, один из вариантов теории струн, в которой элементарные частицы атома считаются струнами [14]. М-теория оперирует 11 измерениями, состоящими, по мнению ряда ученых, из восьми измерений октониона и трех пространственных измерений. Гамильтон записал свои идеи на кладке ирландского моста, но они, возможно, изначально вплетены в ткань мироздания.
Бертран Рассел, единственный математик, получивший Нобелевскую премию по литературе, описывал красоту математики так: «Математика, при правильном на нее взгляде, обладает не только истиной, но и высшей красотой — красотой холодной и суровой, подобно скульптуре, не обращенной ни к какой стороне нашей слабой натуры, лишенной украшений живописи и музыки и тем не менее утонченно чистой и способной к строгому совершенству, свойственному лишь величайшему искусству» [15]. Тождество Эйлера, совершенное и глубокое, полностью соответствует этому описанию. Математическая красота может быть и эстетичной, хотя Рассел не дожил до того дня, когда мог бы увидеть это воочию. В 1980 году, через десять лет после его смерти, на комплексной плоскости была открыта фигура, оказавшаяся настолько поразительной и неординарной, что это изменило ход наших мыслей не только в отношении математики, но и науки в целом.
Прежде чем рассказать об этом, я должен познакомить вас с концепцией итерации, которая представляет собой процесс многократного повторения одной и той же операции. Мы затронули эту тему в предыдущей главе, когда говорили о последовательности, каждый член которой в два раза больше предыдущего: