Когда прямые искривляются. Неевклидовы геометрии (Гомес) - страница 36

Однако все это не означает, что от геометрии Евклида следует отказаться как от бесполезного пережитка прошлого. Евклидова геометрия по-прежнему является наиболее практичной в повседневной жизни: именно она помогает решать нам основные задачи. Вовсе не обязательно использовать гиперболическую геометрию, чтобы переставить мебель в комнате — если, конечно, дом не находится на псевдосфере.

Глава 5

Живительные результаты гиперболической геометрии

До сих пор мы рассматривали основные понятия неевклидовых геометрий, а также исторические обстоятельства их появления и биографии первооткрывателей. В этой главе мы разберем одну из них более подробно, обращая внимание на математические последствия отказа от пятого постулата Евклида.

Для начала мы изложим основные результаты Бойяи и Лобачевского, чтобы лучше понять, как выглядит и работает их геометрия, но мы, конечно, не будем приводить полный перечень всех теорем и доказательств.

Наиболее важным результатом являются изменения в восприятии пространства человеческим разумом. Графические иллюстрации, конечно, играют вспомогательную роль и не являются строгими математическими аргументами, хотя они помогают наглядно пояснить эти понятия.

Как мы уже видели, гиперболическая геометрия является неевклидовой, когда пятый постулат о параллельных прямых заменен следующим: через точку Р вне прямой l можно провести по крайней мере две прямые, параллельные данной. Этот так называемый гиперболический постулат о параллельных прямых может быть проиллюстрирован двумя способами. Оба они эквивалентны и показаны на следующем рисунке:



Из этой гипотезы вытекают различные понятия, лежащие в основе гиперболической геометрии. Мы начнем с основной теоремы.


Углы параллельности

Результат, связанный с углами параллельности, считается основной теоремой гиперболической геометрии. Начнем со следующего рисунка:



Через точку Р вне данной прямой l проходят по крайней мере две прямые, m и n, параллельные l, так что все прямые внутри области I пересекаются с прямой l, а прямые в области II не пересекаются с прямой l. Это означает, что существует бесконечное число прямых, проходящих через точку Р и не пересекающих прямую l. Две крайние параллельные l прямые, тип, разграничивают две области (I и II).



Таким образом, область I ограничена линиями тип, образующими угол (β, который меньше двух прямых углов (180°), как видно на предыдущем рисунке.

Угол β/2α называется углом параллельности. Обратите внимание, что α является острым углом (меньшим, чем прямой угол). Это важный факт, так как в евклидовой геометрии такие углы всегда прямые.