Когда прямые искривляются. Неевклидовы геометрии (Гомес) - страница 41


Работая над своими сложными математическими теориями, Бойяи и Лобачевский вывели тригонометрические выражения для гиперболической геометрии. Удивительным является тот факт, что, как и все остальное, они сделали это независимо друг от друга. Это свидетельствует об их гениальности, но также показывает, что результаты, которые они получили, действительно являются правильными.

Соотношения, выведенные Бойяи и Лобачевским, в малых областях могут быть сведены к формулам классической тригонометрии, но в других случаях они характеризуют новые, совершенно неисследованные миры.

Для переменной х гиперболический синус и гиперболический косинус определяются следующим образом:


Аналогично элементарной тригонометрии, гиперболический тангенс определяется следующей формулой:

th x = shx/chx

Здесь мы вкратце напомним так называемую теорему синусов.

В треугольнике со сторонами а, b и с и с углами А, В и С



справедливо следующее соотношение:

a/sin A = b/sin В = c/sinС

Аналогичное соотношение можно сформулировать в гиперболической тригонометрии:

sin A/sha = sin B/shb = sin С/shc



Чтобы проверить гиперболические равенства, нужно подставить вместо гиперболических функций их определения:


и затем, выполнив соответствующие расчеты, убедиться, что получится один и тот же ответ.

Используя определения гиперболических синуса и косинуса, можно вывести и другие тригонометрические тождества, аналогичные известным тождествам из евклидовой геометрии. Например, мы можем проверить, что

ch(x + у) = chchy + shshy

аналогично традиционному выражению

cos(x + у) = coscosy + sinsiny

* * *

ОСНОВНОЕ ТОЖДЕСТВО ГИПЕРБОЛИЧЕСКОЙ ТРИГОНОМЕТРИИ

В евклидовой тригонометрии есть важное соотношение, называемое основным тригонометрическим тождеством, которое утверждает, что sin2x + cos2x 1. Аналогом в гиперболической тригонометрии является следующее тождество:


ВОПРОС ТЕРМИНОЛОГИИ

В евклидовой терминологии синус и косинус называются круговыми функциями, поскольку они получаются из свойств круга. Рассмотрим окружность радиуса 1 с центром в начале системы координат. Уравнение этой окружности записывается как х>2 + у>2 = 1. В этом простом уравнении мы можем сделать замену переменной, выразив переменные х и у через параметр t следующим образом: х = cost и у = sint. Здесь х и у удовлетворяют соотношению х>2 + у>2 = 1. Такое уравнение называется параметрическим уравнением окружности.

Если вместо круга мы возьмем гиперболу, график функции х>2у>2 = 1, то х ch t и у = sh t удовлетворяют соотношению х>2 у>2 = 1. Это уравнение называется «уравнением гиперболы».