обозначает радиус Земли, тогда объем (
V) и площадь (
S) Земли вычисляются следующим образом:
Если радиус Земли взять равным примерно 6350 км, тогда общая площадь Земли составит:
* * *
ГРАДУСЫ И РАДИАНЫ
Радиан определяется как величина центрального угла окружности, длина дуги которого равна радиусу окружности. Эта величина составляет примерно 55 градусов 17 минут и 44 секунды. Радиан (часто обозначаемый как рад, rad) используется в качестве единицы измерения так называемой «круговой меры угла». Если круговая мера угла в радианах равна а, то угол будет равен 180°·а/π градусов, и наоборот если угол равен G°, то круговая мера угла составит π·G/180 радиан.
То есть угол в 360° полной окружности составит 2·π радиан. В общем случае эти вычисления осуществляются следующим образом.
Если π радиан соответствует 180°, то R радиан соответствует G°, что дает нам следующую пропорцию: π/180 = R/G. Например, сколько радиан имеет угол в 30°? Подставляя в формулу, получим π/180 = R/30, откуда находим R:
R = (30·π/180) = π/6 рад.
Мы также можем решить обратную задачу. Сколько градусов имеет угол в π/4 радиан? Подставляя в формулу, получим
π/180 = (π/4)/G, откуда находим G:
G = ((π/4)·180)/π = 45°
* * *
Применим теперь формулу для объема и получим:
V = (4·π·6350>3)/3 = 1,072499199·10>12·км>3
С этими результатами мы можем вычислить площадь октанта, одной восьмой части земной поверхности. Просто разделим значение площади Земли на 8. Это дает нам 63336566,88 км>2.
Как мы видим, каждый октант очерчивает сферический треугольник с углами 90° = π/2 радиан. Обратите внимание, что общая сумма составляет 270° = Зπ/2 радиан (то есть более чем 180° = π радиан). Тогда чему будет равна каждая из сторон?
Каждая из сторон представляет собой дугу большого круга. Используя формулу для длины дуги, получим:
(α·R) = (π/2)·6350 = 9 974,2625 км
Этот же результат можно получить и другим способом: разделить длину большого круга на четыре (напомним, что длина окружности составляет 2πR):
(2π·6350)/4 = 9974,2625 км.
Ясно, что ту же процедуру можно повторить для Луны, радиус которой равен 1736 км.
* * *
ДЛИНА ДУГИ КРУГОВОГО СЕКТОРА
Для части окружности с центром O и радиусом r, изображенной на рисунке, обозначим α угол, измеряемый, как правило, в радианах, а с — дугу между точками А и B. Тогда длина дуги выражается следующим образом: с = α·r.
Имея дело с длиной стороны сферического треугольника, мы обычно используем круговую меру угла, которую фактически нужно лишь умножить на радиус.
* * *
Вернемся к нашему общему вопросу. Геодезической линией называется кратчайшая линия, соединяющая две точки на поверхности и сама принадлежащая этой поверхности. На совершенно плоской, то есть евклидовой поверхности, геодезической линией является отрезок. Между двумя точками