Математика любви. Закономерности, доказательства и поиск идеального решения (Фрай) - страница 35

Несколько более убедительное предположение заключается в том, что у некоторых женщин может быть необычно большое количество сексуальных партнеров, но такие женщины непропорционально представлены в выборках. Например, представьте женщину, которая признается, что у нее было 3000 мужчин. Этого было бы достаточно, чтобы среднее число партнеров для всех участниц опроса подскочило с семи до восьми (что лишний раз возвращает нас к вопросу о том, насколько адекватно среднее арифметическое описывает средние показатели).

Но, пожалуй, еще важнее то, что мужчины и женщины совершенно по-разному считают своих партнеров. Женщины, как правило, считают в хронологическом порядке, вспоминая мужчин по имени: “Ну, Гарри, потом Зейн, потом этот… Лиам”. Подобный метод подсчета дает достаточно точный результат, но если вы кого-нибудь забыли, то истинное число ваших партнеров будет преуменьшено. В то же время мужчины предпочитают округлять: “Ну, скажем… примерно по пять в год в течение последних четырех лет”. Опять же, это приемлемый метод, но с тенденцией к переоценке. В этот момент мы начинаем понимать, что поразительно большое число побед, одержанных (судя по их ответам) некоторыми мужчинами, стоит иногда поделить на пять.

Впрочем, помимо средних значений, шведское исследование предоставило нам и другие данные, позволяющие сделать поистине революционное открытие.

Формула, которая нас объединяет

В 1999 году руководитель исследования Фредрик Лильерос и его коллеги-математики из Стокгольмского университета представили полученную ими статистику в виде графика и обнаружили поразительно простую зависимость. Почти все 2810 ответов расположились на практически идеальной кривой, как показано на рисунке ниже, продемонстрировав тем самым очевидную закономерность в распределении участников по количеству партнеров.

У подавляющего большинства опрошенных число сексуальных партнеров совсем невелико – вот почему левая часть кривой поднимается высоко вверх. Но среди респондентов было также некоторое количество людей, которые назвали необычно высокое число “побед”, поэтому правая часть кривой плавно приближается к нулевым значениям, но никогда их не достигает. Если шведский опрос репрезентативно представляет население в целом, то такой вид кривой говорит о том, что всегда есть шанс найти кого-то, у кого было сколь угодно большое число сексуальных партнеров. Понятно, что в мире не так уж много людей, у которых было, скажем, десять тысяч или даже “всего” тысяча партнеров, однако график предсказывает, что хотя бы один такой всегда может найтись.