Третьим шагом является оценка транзакции по модели нейронной сети — ни легального, ни мошеннического характера у данной транзакции не выявлено, значит, следует провести нечеткую оценку с использованием нейросети. На основе выхода сети можно будет сделать вывод о том, считать ли транзакцию легальной или подозрительной.
В заключение следует отметить, что построение и обучение нейронной сети является весьма трудоемким процессом, сильно зависящим от качества и особенностей данных. Так, необходима точная классификация мошеннических и легальных транзакций — все ошибки в такой классификации приведут к неверному обучению сети. Также важно учитывать, что легальные транзакции для одной группы клиентов могут быть признаны мошенническими для другой, и без учета этой специфики провести адекватную оценку с приемлемым уровнем ошибок достаточно сложно (если вообще возможно).
Риски, связанные с мошенничеством в платежной сфере, являются ее неотъемлемой характеристикой, полностью исключить которую невозможно. Рациональным представляется подход, связанный с количественной оценкой этих рисков и применением средств и инструментов для их уменьшения, среди которых системы мониторинга транзакций в настоящее время занимают важнейшее место.