В других научных областях изучение пузырьков также стало настоящей исследовательской парадигмой. Глазер начал экспериментировать со своей пузырьковой камерой в 1950-е годы. Примерно в то же время физики-теоретики, в частности Джон Арчибальд Уилер, стали выдвигать идеи о том, что на самом фундаментальном уровне Вселенная напоминает пену. По мнению Уилера, на этом уровне, состоящем из частиц, в миллиарды и триллионы раз меньших, чем атомы, «гладкое как стекло пространство-время, состоящее из атомного и субатомного миров, отступает… вместе с ним буквально исчезают привычные нам феномены “слева”, “справа”, “до”, “после”. Обычные представления о расстоянии исчезнут, обычные представления о времени испарятся. Я не могу подобрать для такого состояния более точного названия, чем “квантовая пена”». Согласно расчетам некоторых современных космологов, вся наша Вселенная возникла, когда из этой пены выскользнул единственный субмикронанопузырек и стал расширяться с экспоненциальной скоростью. Эта красивая теория многое объясняет, кроме, к сожалению, причины, по которой все это могло произойти.
Забавно, что интеллектуальная родословная уилеровской квантовой пены восходит к последнему великому представителю классической физики, изучавшей повседневный мир, – лорду Кельвину. Кельвин не изобретал «пенологию» – эта заслуга принадлежит слепому бельгийцу с подходящей фамилией (говорящей о незначительности результатов его трудов), Жозефу Плато. Но Кельвин много сделал для популяризации науки, рассказывая о том, как он мог бы потратить целую жизнь на изучение всего одного пузырька в мыльной пене. Кстати, эти слова были неискренними: в одном из лабораторных дневников Кельвина записано, что он в общем виде сформулировал свою пузырьковую теорию, нежась как-то утром в постели. Лорд написал на эту тему всего одну короткую статью. Однако сохранились чудесные истории о том, как этот седобородый викторианец возился у ванны с водой и глицерином, взбивая пену какой-то штуковиной, напоминавшей миниатюрный ковшик с пружиной. Получались целые рои пузырьков, среди которых попадались даже кубические, поскольку пружины на ковшике имели форму прямоугольных призм.
Кроме того, работа Кельвина дала науке серьезный импульс, вдохновила важные исследования, выпавшие на долю будущих поколений. Биолог Д’Арси Вентворт Томпсон применил теоремы Кельвина об образовании пузырьков в исследованиях клеточного развития, описав их в эпохальной книге «Рост и форма», опубликованной в 1917 году. Однажды эту книгу охарактеризовали как «самое изысканное литературное произведение в анналах науки на английском языке». Именно с этой книги началась современная клеточная биология. Более того, последние биохимические исследования позволяют предположить, что именно в пузырьках зародилась сама жизнь. Возможно, первые сложные органические молекулы образовались не в бурном океане, как принято считать в настоящее время, а в пузырьках воды, которые оказались заключены в огромных ледовых щитах – например, в Арктике. Вода довольно тяжела, и в процессе замерзания она сдавливает растворенные в пузырьках примеси – в частности, органические молекулы. Концентрация и степень сжатия пузырьков могла оказаться достаточно высокой, чтобы «слепить» из этих молекул самовоспроизводящиеся системы. Более того, природа по достоинству оценила потенциал такого замечательного фокуса и с тех пор активно эксплуатировала такие «пузырьковые чертежи». Независимо от того, где именно сформировались первые органические молекулы – в океане или в толще льда, – первые примитивные клетки определенно напоминали по форме пузырьки. Эти структуры охватывали молекулы ДНК и РНК, не допускали их разрушения или вымывания. Даже сегодня, спустя четыре миллиарда лет, органическая клетка весьма напоминает по форме обычный пузырек.