Том 37. Женщины-математики. От Гипатии до Эмми Нётер (Наварро) - страница 61

.



«Дети Нётер».


Понять, сколь любопытной была свита «детей Нётер», поможет анекдотичный случай времен нацистской Германии. Наташа Артин-Брауншвейг, супруга Эмиля Артина (1898–1962), рассказывала, как они однажды спустились в гамбургское метро: ученики ни на шаг не отставали от Нётер и шли за ней, словно дети за Гамельнским крысоловом. Едва они зашли в поезд, Эмми начала обсуждать математические темы с Эмилем Артином, все больше повышая голос и не обращая внимания на остальных пассажиров. В речи Нётер постоянно звучали слова «фюрер» и «идеал» — к великому ужасу Наташи, которая боялась, что их вот-вот задержит гестапо.

Однако любой из «детей» без труда объяснил бы внушавшим ужас гестаповцам, что эти слова были всего лишь невинными алгебраическими терминами из теории колец. В то время нацисты установили повальную слежку, они вмешивались в частную жизнь людей и буквально осаждали университеты. Один из учеников Эмми, который был евреем и поэтому не мог посещать университет, приходил заниматься к ней домой в форме члена штурмового отряда, чтобы избежать подозрений. Пацифистка Эмми воспринимала происходящее со смирением.

Она занималась наиболее современными разделами алгебры. Время от времени Эмми обращалась к топологии, в частности в совместных работах с Павлом Сергеевичем Александровым (1896–1982). Специализацией Нётер было подробное изучение алгебраических структур, цель которого — отбросить их частные свойства и рассмотреть их в максимально общем виде. Эмми пользовалась безграничным авторитетом, и к ней приезжали ученики со всех уголков Европы. Один из них, Бартель ван дер Варден (1903–1996), впоследствии прославившийся как автор «Современной алгебры», книги, ставшей каноном для нескольких поколений (по этой самой книге, страницы которой были испещрены непонятными символами готического шрифта, учился и я), писал в некрологе Эмми Нётер:

«Для Эмми Нётер связи между числами, функциями и операциями становились ясными, доступными для обобщения и полезными только после того, как они были отделены от конкретных объектов и сведены к концептуальным связям общего вида».

А вот что писал Эйнштейн:

«Теоретическая математика — своего рода поэзия логичных идей. Ее цель — поиск наиболее общих идей, которые в простом, логичном и общем виде описывают максимально возможный спектр формальных взаимосвязей. На этом пути к логической красоте мы и открываем формулы, позволяющие глубже постичь законы природы».


Основные алгебраические структуры

Внимательно прочтите этот раздел, посвященный азам абстрактной алгебры, — в противном случае вы не поймете ничего из того, о чем говорится в следующих разделах. Этот раздел обширен, но прост, так как содержит исключительно определения.