В 1946 году она получила степень доктора под руководством выдающегося математика Альфреда Тарского (1902–1983), защитив диссертацию о проблемах разрешимости в арифметике рациональных чисел (Definability and Decision Problems in Arithmetic). Джулия столкнулась с подобными проблемами впервые, и, по всей видимости, они произвели на нее неизгладимое впечатление. Именно Тарский первым заговорил с подопечной о диофантовых уравнениях.
За исключением всего двух важных статей, все математические труды Джулии Робинсон касались десятой проблемы Гильберта (о ней мы более подробно поговорим далее) и проблем разрешимости. Первая из этих двух статей (A Note on Exact Sequential Analysis) была посвящена аналитико-статистической задаче и написана в период совместной работы с Нейманом. Во второй статье, опубликованной в 1951 году, во время короткого периода работы в корпорации RAND (ведущем американском мозговом центре), рассматривалось решение проблемы равновесия Нэша в теории игр, в то время находившейся на пике популярности, называлась эта работа «Итеративный метод решения игр» (An Iterative Method of Solving a Game).
Как видите, Джулия Робинсон и диофантовы уравнения были словно созданы друг для друга.
Диофантово уравнение — это уравнение с одной или несколькими неизвестными с целыми коэффициентами, решения которого принадлежат множеству целых чисел . Эти уравнения названы в честь древнегреческого математика Диофанта Александрийского (ок. 200–214 — ок. 284–298), который посвятил им целый трактат — «Арифметику». Примером диофантового уравнения является уравнение с тремя неизвестными
х>2 + у>2 = z>2.
Как вы знаете, это уравнение выражает теорему Пифагора, и еще с глубокой древности известно, что оно имеет бесконечно много решений. В параметрическом виде решениями этого уравнения являются тройки чисел вида:
х = m>2 — n>2,
у = 2mn,
z = m>2 + n>2,
где m и n — целые числа. Такие тройки чисел называются пифагоровыми и известны уже много веков. Намного интереснее выглядят тройки ненулевых чисел х, у, z, когда выполняется условие
х>n + у>n = z>n, n > 2.
В этом случае указанное диофантово уравнение не имеет решений. Так формулируется знаменитая теорема Ферма, доказанная в 1995 году. Десятая проблема Гильберта была не столь «простой» и звучала принципиально иначе: в ней требовалось найти алгоритм, позволяющий определить, имеет ли решения произвольное диофантово уравнение. К счастью, сегодня мы знаем, что такого алгоритма не существует. Для решения десятой проблемы Гильберта потребовалось не 300 лет, как на доказательство теоремы Ферма, но целых 70, а также ряд блестящих идей.