Если бы числа могли говорить. Гаусс. Теория чисел (Лизана) - страница 22


Столкнувшись с невозможностью выразить такие числа, как sqrt(2), в виде дроби, математики назвали их иррациональными. Несмотря на сложности, связанные с их точной записью, иррациональные числа имеют реальное значение, поскольку их можно представить как точки на числовой прямой. Число sqrt(2) находится между 1,4 и 1,5, и если построить прямоугольный треугольник, катеты которого будут равны 1, мы знаем, что его гипотенуза равна sqrt(2) по теореме Пифагора. Множество чисел, в которое включались бы и рациональные, и иррациональные числа, назвали действительными числами, и они представлены на числовой прямой.

Проблема поиска корней многочлена усложнялась, когда речь шла о том, чтобы найти решения таких с виду простых уравнений, как х² + 1 = 0. Казалось очевидным, что ни одно число, возведенное в квадрат, не может дать в результате отрицательное число, каким бы ни было исходное число, положительным или отрицательным. Итак, пришлось создать новый тип чисел, которые позволили бы решить уравнения этого типа. Новое число, sqrt(-1), было названо мнимым числом и обозначено как г. Создание, казалось бы, из ничего, решения для этого уравнения кажется обманом: почему бы не признать, что у уравнения просто нет решения? Но ответ в том, что найденное решение вызвало большой прогресс арифметики и при этом оно не содержит логических противоречий. Самолеты никогда не поднялись бы в воздух, если бы инженеры не пользовались мнимыми числами. Итак, если мы будем использовать новое обозначение и решим уравнение х² +1=0 как квадратный многочлен вида aх² + bх + с = 0, с помощью известной формулы

что приводит к корням i и -i, то получается, что x² + 1 = (x + r) · (x - r), в соответствии с основной теоремой алгебры.

Первым, кто активно пользовался мнимыми числами, также называемыми комплексными, был итальянский математик Джироламо Кардано (1501-1576), который применил их в формуле решения кубических уравнений, но термин «комплексные числа» был введен Гауссом при доказательстве основной теоремы алгебры в своей докторской диссертации.


РАСПРЕДЕЛЕНИЕ РАЦИОНАЛЬНЫХ И ИРРАЦИОНАЛЬНЫХ ЧИСЕЛ НА ЧИСЛОВОЙ ПРЯМОЙ

Числовая прямая сформирована из рациональных чисел, представимых в виде дробей, и иррациональных, для которых такое представление невозможно. Но как распределяются оба множества на прямой? Есть ли какое-то сбалансированное распределение, которое делает возможным соседство подмножеств на числовой прямой? Чтобы ответить на этот вопрос, сделаем несколько выводов, которые могут вас удивить. Если взять два любых числа множества рациональных чисел, которое обычно обозначают Q, всегда можно найди другое рациональное число, заключенное между ними. Это достаточно очевидно. Если q