ПЕТЕРБУРГСКАЯ АКАДЕМИЯ НАУК
Академия наук была основана Петром I в Санкт-Петербурге в январе 1724 года и сохраняла это название с 1724 до 1917 год. Первыми учеными, приглашенными работать в ней, стали признанные европейские математики Леонард Эйлер, Кристиан Гольдбах, Николай и Даниил Бернулли, эмбриолог Каспар Фридрих Вольф (1734-1794), астроном и географ Жозеф Никола Делиль (1688-1768), физик Георг Вольфганг Крафт (ок. 1700-1754) и историк Герхард Фридрих Мюллер (1705-1783). Гаусса также звали в Петербург, поскольку, вычислив орбиту Цереры, он приобрел широкую известность в научном мире, но ученый отказался от этого приглашения. Академия достигла большого успеха в развитии науки, практически не имевшего аналогов ни на европейском, ни на мировом уровне. Она продолжала работать даже в периоды исторических потрясений, а в 1934 году ее центр был перемещен в Москву вместе с большинством исследовательских институтов Советского Союза.
Эйлер также посвятил себя изучению простых чисел. Для него, как и для Гаусса, легче указать области математики, в которых он не сделал никаких открытий, чем наоборот. Страсть Эйлера к простым числам была усилена перепиской с Кристианом Гольдбахом, секретарем Петербургской академии наук.
Гольдбах, как и Мерсенн, не был профессиональным математиком, но его завораживала игра с числами и постановка числовых экспериментов. Именно Эйлеру он впервые рассказал о своей знаменитой гипотезе. Эйлер использовал помощь Гольдбаха для проверки доказательств своих гипотез о простых числах, поскольку в аргументации встречались не вполне обоснованные моменты. Также он очень интересовался гипотезами Ферма об этих числах. У Эйлера работа с простыми числами шла чрезвычайно хорошо, поскольку он обладал исключительными вычислительными способностями, виртуозно манипулировал формулами и обнаруживал скрытые связи. Его коллега, математик и один из реформаторов Парижской академии наук, Франсуа Араго (1786-1853) сказал: «Эйлер считает без видимых усилий, как люди дышат, а орлы летают».
Эйлер просто наслаждался вычислением простых чисел. Он составил их таблицы, включая числа до 100000 и даже больше. Как мы уже упоминали, ему удалось доказать, что пятое число Ферма не является простым — для этого ученый пошел теоретическим путем, поскольку для вычисления этого числа не хватало даже его способностей. А одним из самых любопытных открытий Эйлера стала формула, которая, казалось, генерирует огромное количество простых чисел. В 1772 году он вычислил все результаты, которые получаются, если присвоить х значения от 0 до 39 в уравнении х² + х + 41, и получил следующий список: