Трехмерный мир. Евклид. Геометрия (Каррера) - страница 35


Видимо, для того чтобы понять устройство Вселенной, необходимо прибегнуть к геометрии. Такое же мнение высказал Исаак Ньютон в своем знаменитом сочинении «Математические начала натуральной философии».


БЕСКОНЕЧНОСТЬ В НАЧАЛАХ

Мы не можем и не должны забывать о влиянии философии на древнегреческую математику. Аристотель, например, уделяет огромное влияние понятию бесконечности в своей «Физике». В самом начале он пишет:


«Мелисс... утверждает, что сущее бесконечно. Следовательно, сущее есть нечто количественное, так как бесконечное относится к [категории] количества, сущность же, а также качество или состояние не могут быть бесконечными иначе как по совпадению... ведь определение бесконечного включает в себя [категорию] количества, а не сущности или качества. Стало быть, если сущее будет и сущностью, и количеством, сущих будет два, а не одно; если же оно будет только сущностью, то оно не может быть бесконечным и вообще не будет иметь величины, иначе оно окажется каким-то количеством».


Но более детальный анализ бесконечности производится в книге III, где Аристотель рассуждает о природе бесконечности, ее существовании и видах. После подробнейших философских рассуждений древний грек заключает, что существует «бесконечное путем прибавления» для чисел (в арифметике) и «бесконечное путем деления» для величин (в геометрии). Оба типа бесконечного существуют потенциально, «в возможности», а не «актуально», в действительности. Другими словами, в науке бесконечности не существует, ни один объект не может считаться бесконечным.

Портрет Евклида на марке Мальдивской Республики (1988).

Аристотель.

В 1975 году математик Джон Плейфэр предложил новую формулировку пятого постулата Евклида;теперь этот постулат известен как аксиома Плейфэра.

Немецкий математик Давид Гильберт в 1886 году.


Бесконечность является только порождающим процессом. Актуальную бесконечность нельзя принять как возможную идею идеального мира и тем более ее нельзя применить к математике. Следовательно, остается только потенциально бесконечное, то есть возможность постоянно продолжать что-то, но всегда на ограниченное число ступеней. Этот процесс может никогда не кончаться: бесконечное всегда останется в области возможного. Аристотель очень убедителен, когда говорит об использовании математиками актуальной бесконечности:


«Наше рассуждение, отрицающее актуальность бесконечного в отношении увеличения, как не проходимого до конца, не отнимает у математиков их исследования, ведь они теперь не нуждаются в таком бесконечном и не пользуются им: [математикам] надо только, чтобы ограниченная линия была такой величины, как им желательно, а в том же отношении, в каком делится самая большая величина, можно разделить какую угодно другую. Таким образом, для доказательств бесконечное не принесет им никакой пользы, а бытие будет найдено в [реально] существующих величинах».