Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса (Ливио) - страница 132

Программа Гильберта жертвовала смыслом ради того, чтобы обеспечить надежные основы. Поэтому для его последователей-формалистов математика и в самом деле была лишь игрой, однако их целью было строго доказать, что эта игра полностью логически последовательна[138]. При всех достижениях аксиоматизации казалось, что эта формалистическая «доказательно-теоретическая» мечта сбудется буквально со дня на день.

Однако не все были убеждены, что Гильберт избрал верный путь. Людвиг Витгенштейн (1889–1951), которого многие называют величайшим философом ХХ века, считал, что Гильберт напрасно тратит время на метаматематику[139]. «Нельзя устанавливать правило для применения другого правила», – настаивал он. Иными словами, Витгенштейн не считал, что понимание одной «игры» может зависеть от создания другой: «Если у меня возникла неясность относительно природы математики, мне не поможет никакое доказательство» (Waismann 1979).


Рис. 53


И все же никто не мог предугадать, какой вот-вот грянет гром. Двадцатичетырехлетний Курт Гёдель одним ударом вбил кол в самое сердце формализма.

Курт Гёдель (рис. 53) родился 28 апреля 1906 года в моравском городе, который сейчас известен под чешским названием Брно[140]. В то время город назывался Брюнн, находился в Австро-Венгерской империи, и Гёдель рос в семье, где говорили по-немецки. Его отец Рудольф Гёдель управлял текстильной фабрикой, а мать Марианна Гёдель следила, чтобы юный Курт получил должное широкое образование – изучал математику, историю, языки и теологию. Подростком Гёдель почувствовал особый интерес к математике и философии и в восемнадцать лет поступил в Венский университет, где его внимание привлекала в основном математическая логика. Особенно его восхищали «Principia Mathematica» Рассела и Уайтхеда и программа Гильберта, поэтому темой диссертации он выбрал задачу о полноте. Целью этого исследования было, вообще говоря, определить, достаточно ли формального подхода, за который ратовал Гильберт, чтобы вывести все истинные утверждения математики. В 1930 году Гёдель получил докторскую степень, а всего через год опубликовал свои теоремы о неполноте, от которых по философскому и математическому миру прокатилось настоящее цунами[141].

На чисто математическом языке эти теоремы звучали непонятно для непосвященных и не особенно интересно.

1. Любая непротиворечивая формальная система S, в пределах которой можно вывести определенный объем элементарной арифметики, может считаться неполной по отношению к утверждениям элементарной арифметики: существуют утверждения, которые в рамках