В конце 1960-х годов плодовитый англо-американский математик Джон Хортон Конвэй описал процедуру постепенного «развязывания» узлов и тем самым вскрыл глубинные отношения между узлами и их многочленами Александера (Conway 1970). В частности, Конвей предложил две простые «хирургические» операции, которые могли послужить основой для определения инварианта узла. Операции Конвея, получившие названия флип и сглаживание, схематически изображены на рис. 56. При флипе (рис. 56, а) для трансформации пересечения верхний участок струны пропускают под нижним (на рисунке также видно, как проделать эту трансформацию с настоящим узлом на веревке). Обратите внимание, что флип, очевидно, меняет самую природу узла. Например, легко убедиться, что узел-трилистник с рис. 54, b в результате флипа станет незаузленным узлом (рис. 54, а). Операция сглаживания по Конвею вовсе убирает пересечение (рис. 56, b) – для этого нужно «разрезать» струну и «склеить» не те концы.
Рис. 56
Благодаря трудам Конвея математики стали по-новому понимать устройство узлов, но все же еще лет двадцать были уверены, что других инвариантов узлов (наподобие многочлена Александера) уже не найдется. Однако в 1984 году положение дел резко изменилось.
Новозеландско-американский математик Вон Джонс вообще не изучал узлы. Он исследовал мир еще более абстрактный – так называемые алгебры фон Неймана. И неожиданно для себя обнаружил, что в алгебрах фон Неймана есть некое соотношение, подозрительно похожее на одно соотношение из теории узлов. Тогда Джонс встретился с Джоан Бирман, специалистом по теории узлов из Колумбийского университета, чтобы обсудить, что с этим можно сделать. Изучение этого соотношения в результате выявило совершенно новый инвариант узлов – так называемый многочлен Джонса (Jones 1985). Математики сразу признали, что многочлен Джонса – куда более тонкий инвариант, чем многочлен Александера. В частности, он позволяет отличать узел от его зеркального отражения (то есть «левый» трилистник на рис. 57 от «правого»), а многочлены Александера для таких узлов тождественны. Однако главное даже не это, а то, что открытие Джонса вызвало у специалистов по теории узлов небывалый прилив энтузиазма. Когда было объявлено об открытии нового инварианта, в мире узлов внезапно вспыхнула бешеная активность, прямо как на фондовой бирже в день, когда Федеральная резервная система ни с того ни с сего понижает процентные ставки.
Рис. 57
Однако, невзирая на то, что за прошедшие три десятилетия были обнаружены и другие инварианты, пока не удается составить полную классификацию узлов. Вопрос о том, какой именно узел можно превратить в другой узел, если вертеть его и крутить, не прибегая к помощи ножниц, остается без ответа. Пока что самый удачный инвариант – это творение русско-французского математика Максима Концевича, который получил за него Филдсовскую медаль в 1998 году и Премию Крафорда в 2008 году. Кстати, в 1998 году Джим Хосте из Колледжа Питцера в Клермонте в штате Калифорния и Джеффри Уикс из Кантона в штате Нью-Йорк составили таблицу всех узлов до шестнадцати пересечений включительно. Точно такую же таблицу независимо от них составил Морвен Тистлетвейт из Университета штата Теннесси в Ноксвилле. В каждой из этих таблиц содержится ровно 1 701 936 разных узлов!