Пенроуз не предлагает ответов ни на одну из этих трех загадок. Он просто делает лаконичный вывод: «Миров, несомненно, не три, а только один, о подлинной природе которого мы на сегодня не имеем ни малейшего представления». В этом признании гораздо больше смирения, чем в ответе учителя из пьесы английского драматурга Алана Беннетта «Сорок лет службы».
Фостер: Сэр, мне по-прежнему не вполне понятна идея Святой Троицы.
Учитель: Все очень просто – один есть три, три есть один. Если у вас по этому поводу есть сомнения, спросите учителя математики.
На самом деле загадка еще запутаннее. У того, что математика так хорошо описывает мир вокруг нас (Вигнер называл это «непостижимой эффективностью математики»), есть две стороны, одна поразительнее другой. Одну из них можно было бы назвать активной. Когда физики блуждают по лабиринтам природы, то освещают себе путь математикой: инструменты, которыми они пользуются и которые постоянно разрабатывают, модели, которые они конструируют, и объяснения, которые они предлагают, по сути своей математические. На первый взгляд это само по себе чудо. Ньютон наблюдал падение яблока, фазы Луны и приливы по берегам морей (не уверен, что он видел их воочию), а не математические формулы. Однако он каким-то образом сумел вывести из этих природных явлений ясные, лаконичные и неимоверно точные математические законы природы. Подобным же образом шотландский физик Джеймс Клерк Максвелл (1831–1879), когда он расширил рамки классической физики и включил в нее все электрические и магнитные явления, известные в шестидесятые годы XIX века, сделал это при помощи всего четырех математических формул. Задумайтесь об этом. Объяснение результатов целого ряда экспериментов в области света и электромагнетизма, на описание которых потребовались целые тома, свелось к четырем сухим формулам. Общая теория относительности Эйнштейна – случай еще более поразительный: это идеальный пример необычайно точной и самосогласованной математической теории, которая описывает самые основы мироздания – структуру пространства-времени.
Однако у загадочной эффективности математики есть и «пассивная» сторона, столь неожиданная, что напрочь затмевает «активную». Понятия и отношения, которые математики изучают ради чистой науки, даже и не думая об их практическом применении, спустя десятки, а иногда и сотни лет нежданно-негаданно оказываются решениями задач, которые коренятся в физической реальности! Как такое может быть? Возьмем, к примеру, довольно забавный случай с чудаковатым британским математиком Годфри Гарольдом Харди (1877–1947). Харди так гордился, что в его трудах не содержится ничего, кроме чистой математики, что подчеркивал в своей знаменитой книге «Апология математика», опубликованной в 1940 году: «Я никогда не делал ничего “полезного”. Ни одно мое открытие не способствовало ни прямо, ни косвенно увеличению или уменьшению добра или зла и не оказало ни малейшего влияния на благоустроенность мира (