Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса (Ливио) - страница 7

В 1975 году Митч Фейгенабаум, который тогда был молодым специалистом по математической физике в Национальной лаборатории в Лос-Аламосе, играл со своим карманным калькулятором HP-65. Он изучал поведение одной простой функции. И обнаружил, что последовательность чисел, получавшаяся в результате вычислений, устремляется все ближе и ближе к определенному числу – 4,669…[6]. Когда Митч изучил некоторые другие уравнения, то, к своему изумлению, обнаружил, что и там появляется то же самое загадочное число. Вскоре Фейгенбаум сделал вывод, что открыл некую универсальную закономерность, которая каким-то образом знаменует переход от порядка к хаосу, хотя объяснения этому найти не мог. Неудивительно, что поначалу физики отнеслись к этому весьма скептически. И в самом деле, с какой стати одно и то же число должно характеризовать поведение разных на первый взгляд систем? Первая статья Фейгенбаума проходила рецензирование в течение полугода, после чего ее отклонили. Однако довольно скоро эксперименты показали, что если нагревать жидкий гелий снизу, он ведет себя именно так, как предсказывает универсальное решение Фейгенбаума. Как выяснилось, так себя ведут и многие другие системы. Удивительное число Фейгенбаума возникало и при переходе от упорядоченного течения жидкости или газа к турбулентности и даже в поведении воды, капающей из крана. Перечень подобных случаев, когда математики «предвосхищали» потребности различных дисциплин на несколько поколений вперед, все пополняется и пополняется. Среди самых поразительных примеров загадочного и неожиданного взаимодействия между математикой и реальным (физическим) миром – история создания математической теории узлов. Математический узел похож на обычный узел на тонком шнуре, концы которого намертво сращены. То есть математический узел – это замкнутая кривая без свободных концов. Как ни странно, первоначальный толчок развитию математической теории узлов дала ошибочная модель атома, разработанная в XIX веке. Когда эту модель отвергли – спустя всего 20 лет после создания, – теория узлов стала разливаться дальше как сравнительно малоизвестная отрасль чистой математики. Невероятно, но факт: в наши дни это абстрактное начинание неожиданно нашло широчайшее применение в самых разных областях исследований – от молекулярной структуры ДНК до теории струн, попытки объединить субатомный мир с гравитацией. К этой восхитительной истории я еще вернусь в главе 8, поскольку ее циклическая структура, пожалуй, лучше всего показывает, как из попыток объяснить физическую реальность возникают отрасли математики, которые затем уходят в область отвлеченной математики, однако впоследствии неожиданно возвращаются в реальность.